
VA-file Implementation and Empirical Report

Xian Yang, Ge Shi, Shuying Guan

Dec 2018

1 Description

In the area of similarity search in high-dimensional vector spaces, there exists a number of conventional
methods which proves to be efficient, such as space-partitioning methods, data-partitioning index trees and
bottom-up methods. However, the dimensional curse is still a unavoidable problem for those methods as
the performance could significantly degrade with the increase of dimension. This paper did a thorough
analysis on those methods and demonstrates that they could be easily outperformed by a sequential scan
whenever the dimensional is above 10. To further support the impact of high dimension in HDVS, this paper
establishes a general model for clustering and partitioning to accurately evaluate and predict the average
cost of similarity search in HDVSs. It also formally shows that these methods inherit linear complexity at
high dimensionality which results in degeneration to a sequential scan if the dimension goes beyond the limit.

Aiming at getting rid of the curse of dimensionality, this paper proposes an alternative technique in similar-
ity search call vector approximation which potentially improves the efficiency of sequential scan as soon as
possible. This method is initialized by dividing data spaces into rectangular cells without hierarchical orga-
nization as R-tree has. After we obtain the approximation of data points according to their belonging cells,
nearest neighbor search is conducted in a scanning manner with a filtering step which drastically excludes
the candidate vectors based on these approximations.

2 Vector Approximation

The vector approximation file (VA-File), is an array of compact, geometric approximations to data points
[2]. It divides each dimension of data space into 2bj parts which can be represented by a bj bits index. Given
a data vector, the approximation of it is the concatenation of index in of dimension based on the geometric
clue. The space uniquely defined by d dimension indices is called a block. Therefore, the approximation
indicates which block the data vector lies in and we can get a rough estimation of the location of the data
vector from it. This gives us a heuristic idea on retrieving the nearest neighbors of an anchor data vector
with low cost of searching.

Table 1: Notation summary of VA-File
d number of dimensions j range of dimensions 1, 2, ..., d
n number of vectors i range of vectors 1, 2, ..., n
~vi i− th vector ~vi,j j − th dimension component of ~vi
b number of bits per approximation bj j − th dimension bits number per approximation
ai approximation for ~vi ri,j region into which ~vi falls in dim j
mj [k] k − th partition mark in dim j p p power in distance
Lp weighted distance function Lp(~vi, ~vq) kb binary form of index k
li, ui lower and upper bounds of a block li,j , ui,j contribution to li, ui for dimension j

1

2.1 Structure

Assume n is the number of data vectors and d the number of dimensions, we use i to denote the i− th data
vector and j to denote the j − th dimension. To build a VA-File, we need all the data vectors to share the
same number of dimension. Here we assume the range of the magnitude of data vectors is between 0 and 1.
For each vector, a b-bit approximation is derived. Then, to implement a VA-File, we need to (1) allocate bj
bits to each dimension which sum up to b; (2) divide each dimension into 2bj partitions and determine the
division marks value mj [k], k ∈ 0, ..., 2bj ; (3) assign a data vector an approximation based on its geometric
location in each dimension; (4) get the lower and upper bounds li and ui of the distances between an anchor
vector ~vq in the query and all the blocks; (5) Filter out the invalid blocks and compute the distances between
the data vectors in the valid blocks with ~vq.

The relationship between the total number of bits b and the number of dimensions d determines bj as
follows:

bj = b b
d
c+

{
1, j ≤ b mod d
0, otherwise

Small bj is usually enough for high dimension data. A b-bit approximation makes 2b blocks which is over 1
billion when b = 30. If there are 30 dimension, 1 bit allocation for each dimension is enough to make over 1
billion blocks.

The number of bits in each dimension is used to determine partition points, and hence regions within
each dimension. In particular, bj bits separate the range of one dimension into 2bj regions within dimension
j from 0 to 2bj , requiring 2bj + 1 partition points, including 0 and 1 specifically in our setting. The running
example in Figure 1 illustrates this. After partitions, we locate each data vector ~vi by checking it’s in which
two partition marks. Assume mj [k] < ~vi,j < mj [k + 1], where k ∈ 0, ..., 2bj , we can set the approximation
ai,j of the i − th data in dimension j as binary expression of k, denoted as kb. The concatenation of kb
denotes the name of the block where the data vector locates. In practice we use a dictionary structure to
save the approximation blocks and the corresponding points where the key is the binary approximation and
the value is a list of the data vector that share the same approximation.

Figure 1: A two-dimensional example (d = 2, b = 3)

2.2 Loading Data

There are many ways to partition each dimension such as even partition and equal-fully partition. Even
partition, for example partition the range [0, 1] into two even parts [0, 0.5] and (0.5, 1] without considering the
distribution of data, gives a bad selectivity property (the average number of data vectors in each non-empty

2

block) since a lot of the blocks are empty while others are nearly full. Thus, we adopt equal-fully partition
which needs to know the latent distribution of data vectors.

The distribution of data can be got through two ways: (1) sort the data based the values of each dimension
to get the accurate distribution; (2) make a histogram of the values of data in each dimension to get an
estimation of the distribution. For n vectors in d dimensions, function (1) can be done in O(dnlog(n))
and function (2) can be done in O(dn). We can get the partition marks through finding the correspondent
values of even partition of cumulative distribution function (CDF) marks. Suppose we partition the j − th
dimension into 2bj regions, then we can get 2bj + 1 marks.

An approximation ai for each vector vi is generated as follows. Let the 2bj regions in dimension j be
numbered 0, ..., 2bj + 1. Let ri,j be the number of the region into which vi,j falls. We define a point to fall
into a region only if it is greater than or equal to the lower bound for the region, and strictly less than the
upper bound for the region. Therefore, vi,j falls into the region numbered ri,j if and only if:

mj [ri,j] ≤ vi,j < pj [ri,j + 1]

Then, we can load the data vectors and get the approximation of them one by one and saved in the suggested
dictionary of list structure.

2.3 Bounds

Figure 2: The lower and upper bounds of the distance from a block to the anchor vector

A easy way to do nearest search using VA-File is filtering out the blocks that have zero chance to contain
the nearest neighbor by computing the upper and lower bounds of each block corresponding the anchor vector
in the query. Assume a query ~vq and a distance function Lp, for some power parameter p. An approximation
ai determines a lower bound li, and an upper bound ui such that:

li ≤ Lp(~vq, ~vi) ≤ ui

The distance between two vectors is defined as:

Lp(~vq;~vi) = (

d∑
j=1

(wj · |aj − bj |)p)
1
p

We usually define wj = 1 and p = 2.
The lower bound li and upper bound ui can be derived as follows. The lower bound and upper bound of

the distance from a block to vector vq in dimension j is li,j and ui,j . As with data vectors, a query ~vq consists
of components vq,j , the component of its approximation in dimension j is aq,j . The decimal representation
of ai,j is rq,j . Similarly, the decimal representation of each block in dimension j is ri,j . Then the two marks

3

defines a block in dimension j are mj [ri,j] and mj [ri,j + 1]. Based on this information, the bounds li and ui

are defined by the equations, see Figure 2:

li = (

d∑
j=1

(lpi,j)
1
p , where

 vq,j −mj [ri,j + 1], ri,j < rq,i
0, ri,j = rq,i
mj [ri,j]− vq,j , ri,j > rq,i

ui = (

d∑
j=1

(up
i,j)

1
p , where

 vq,j −mj [ri,j], ri,j < rq,i
MAX(vq,j −mj [ri,j],mj [ri,j + 1]− vq,j), ri,j = rq,i
mj [ri,j + 1]− vq,j , ri,j > rq,i

2.4 Nearest Search Algorithm

The pseudo code of nearest search algorithm is as following: The details are:

Figure 3: The lower and upper bounds of the distance from a block to the anchor vector

(1) candidate is an array of size k, where k is the number of nearest neighbor we want.
(2) In phase-one, the candidate array is initialized as the number of dimension d. (3) The function
Candidate(ui, i) is inserting the upper bound and approximation of a block using binary search from small
to big. (4) d updated as the biggest value in the candidate array which is the k − th smallest upper bounds
among all the blocks. (5) The Heap is a smaller-pop first heap. (6) In phase-two, the candidate array is
initialized with the d get from phase-one. (7) Check if the heap is empty before pop.

3 R-Tree

3.1 Bulk Loading with Sort-Tile-Recursive

R-tree has been widely discussed and used in multi-dimentional database systems. This index technique
improves query performance by storing a collection of rectangles and pointers that reflects the hierarchical
data structure. However, general inserted based R-tree building method is highly susceptible to the order
of input data. Also, considering the efficiency of building an R-tree on high dimensional, we implemented
Sort-Tile-Recursive for R-tree packing.

4

In order to do bulk loading for an R-tree, consider a d-dimensional data set of n points. We are sup-
posed to build hyper-rectangles with d intervals of the form [li, di] where i ∈ [1, d]. These intervals will be
used to identify which rectangle that each point belongs to as well.

Sort-Tile-Recursive will be performed recursively on each dimension. We set the capacity of leaf pages
to c, which is the maximum nodes that a leaf page could hold. Then we could calculate and get the number
of leaf pages P = dnc e and number of slices on each dimension S = dP 1

d e. According to these numbers,
we firstly sort points based on the first coordinate of them and partition them into S rectangles. (e.g. If
the first coordinate is defined by x-axis, we will get S vertical rectangles.) After we have processed the
hyper-rectangles from the sorted list of first coordinate, each slice is now further expanded recursively using
the remaining d− 1 coordinates.

3.2 K - Nearest Neighbor Search

The search for nearest neighbor in R-tree is has been studied to improve the efficiency. [1] has proposed a
new algorithm to enable searching for nearest neighbor faster. [1] has introduced two metrics for nearest
neighbor searching. The first one is based on the minimum distance between current block and query point.
The second metric is based on the minimum of the maximum possible distances between query point and
a face of non-empty minimum bounding rectangle (MBR). The first metric minimum distance (MINDIST)
and the second metric minimum maximum distance (MINMAXDIST) are the lower bound and upper bound
of actual distance between actual point and query point.

For MINDIST between an MBR M and the query point q for n dimension, we employ below definition.
li indicate the lower bound of ith dimension in MBR and ui indicate the upper bound of ith dimension in
MBR. MINDIST indicate the possible smallest distance between points in MBR and query point.

MINDIST (M, q) =

n∑
i=1

|qi − ri|2

where

ri =

 li, qi < li
ui, qi > ui

qi, otherwise

For MINMAXDIST between an MBR M and the query point q for n dimension, we employ below definition.
li indicate the lower bound of ith dimension in MBR and ui indicate the upper bound of ith dimension in
MBR.

MINMAXDIST (M, q) = min
1≤k≤n

(|qk − rmk|2 +
∑
i 6=k

1≤i≤n

qi − rMi)

where

rmk =

{
lk, qi ≤ lk+uk

2
uk, otherwise

rMi =

{
li, qi ≥ lk+uk

2
ui, otherwise

With these two metrics, we below two rules to help us pruning when we search the k nearest neighbor from
root.

• When there are already k candidate points available, which means at least k points in the candi-
date MBR which are going to be gone through and the MINDIST(Mi,q) is greater than the last
MINMAXDIST(Mj ,q), Mi could be discarded since we could ensure we get at least k points whose
distance is smaller than the distance between points in Mi and query point.

5

• When we already get k actual points in the result and the MINDIST(M, q) is greater than the greatest
distance between k acutal point and query point, M could be discarded. Because we already find k
points that their distance from query point is less than the minimum distance between points is M and
query point.

In implementation, we start from the root MBR. For each MBR, we store the lower bound and upper bound
of the MBR in each dimension, the number of points that is inside this MBR. For MBR which are leaves,
we store the actual points inside this MBR and for MBR which are not leaves, we store the MBR id that is
inside current MBR. Since we use bulk loading, any MBR would only under one MBR, no overlaps.

If current MBR is leaf, we calculate the distance between each points inside this MBR and query point
and only keep the k smallest distance point. If current MBR is not leaf, we calculate the MINDIST and
MINMAXDIST of MBRs inside current MBR, then we sort them by MINMAXDIST for each MBR. Starting
from the smallest MINMAXDIST MBR, we apply the rules mentioned above to filter MBR. After filtering,
we visit the MBR and filter its children with criteria in current paragraph with the sequence that we filter
them.

4 Experiments & Results

For VA-File, we performed experiment with 4 splits at each dimension. For R-tree, we performed experiment
with at most 8 splits at each dimension when bulk loading the data. To avoid bias, for each type of data in
each number of dimension, we perform the experiment 5 times and use its average time and average visited
block percentage for result. For synthetic data, we generate query point randomly from 0.0 to 1.0. For real
data, we randomly select a point from the real dataset to be query point. The euclidean distance is used.

4.1 Uniform Data

We perform experiment on 50000 uniform data range from 0.0 to 1.0.

(a) Time Cost Compared (b) Visited Block Percentage Compared

Figure 4: Experiment Result on Synthetic Uniform Data

We perform experiment to find the 10 nearest neighbor point with VA file algorithm, R-tree nearest neighbor
search with only rule 1 mentioned above and R-tree nearest neighbor search with both rules mentioned above
on 50000 synthetic uniform data with increasing dimension from 3 to 39. As shown above, time cost for
R-tree grows exponentially fast while time cost for VA file grows slowly when dimension increase.

As for visited block percentage, when only the first rule applied for R-tree, the visited block percentage
start high and gently grow to 1.0 as dimension increase. When all rules applied for R-tree, the visited block
percentage start slow and gradually grow while percentage for VA file decrease when dimension grow.

6

4.2 Normal Data

We perform experiment on 50000 normal distribution data range from 0.0 to 1.0.

(a) Time Cost Compared (b) Visited Block Percentage Compared

Figure 5: Experiment Result on Synthetic NOrmal Distribution Data

We perform experiment to find the 10 nearest neighbor point with VA file algorithm, R-tree nearest neigh-
bor search with only rule 1 mentioned above and R-tree nearest neighbor search with both rules mentioned
above on 50000 synthetic normal distribution data with increasing dimension from 3 to 39. As shown above,
time cost for R-tree grows exponentially fast while time cost for VA file grows slowly when dimension increase.

As for visited block percentage, when only the first rule applied for R-tree, the visited block percentage
start high and gently grow to 1 as dimension increase. When all rules applied for R-tree, the visited block
percentage start slow and gradually grow while percentage for VA file decrease when dimension grow.

4.3 Real Data

We use Labelled Faces in the Wild (LFW) dataset which is a large-scale face attributes dataset. We extract
13143 images from it, resize them into 8 x 8 images and convert them into grey scale images. These images
give us 13143 64 dimension data range from 0.0 to 1.0 to perform experiment.

(a) Time Cost Compared (b) Visited Block Percentage Compared

Figure 6: Experiment Result on Real Image Data

We perform experiment to find the 10 nearest neighbor point with VA file algorithm, R-tree nearest neighbor
search with only rule 1 mentioned above and R-tree nearest neighbor search with both rules mentioned above
on real image data with increasing dimension from 3 to 39. As shown above, time cost for R-tree grows
exponentially fast while time cost for VA file grows slowly when dimension increase.

7

As for visited block percentage, when only the first rule applied for R-tree, the visited block percentage
start high and gently grow to 1 as dimension increase. When all rules applied for R-tree, the visited block
percentage start slow and slowly grow while percentage for VA file decrease when dimension grow.

4.4 Time Cost for R-tree

The plot of time cost of R-tree is slightly different from what we get from the original paper. In the plot of
the paper, the time cost will converge relatively fast to a constant as this technique degenerate to a sequential
scan. However, our plot shows a exponential increase in time cost and does not converge even we increase
the test dimension to 39. We think there are several reasons resulting this plot:

• We did not use a constant number of blocks for R-tree. Instead, we only specify the number of split in
STR which could constantly increase the number of blocks as dimension goes infinity. So there literally
is no upper bound for number of candidate rectangles.

• The Nearest Neighbor search algorithm we implemented is totally different from the method proposed
in the paper. We combined multiple rules to accelerate the process of searching possible overlapping
rectangles by eliminating the majority of distant rectangles, which is achieved by the defined MinMax
distance and is quite similar to VA search algorithm. According to the plot of Visited Block percentage,
our R-tree has not yet decayed to the scanning method around dimension 40. So it is reasonable that
the time cost does not converge. However, I do think there could be a threshold on dimension where
the time cost of our R-tree would converge.

4.5 Performance on Synthetic Data and Image Data

Based on the plots of Visited Block Percentage, we observe that the two methods both perform better on
real image data than on the synthetic data. The reason that have caused this could be:

• For the synthetic data, each coordinate is generated independently on other coordinates. So the entire
data is sparse with high dimensional. On the contrary, real image data usually possess latent pattern
within multiple dimensions. That is, each coordinates could possibly be highly correlated to other
coordinates, thus making NN search much easier for both search algorithms.

• The size of the real image data is smaller than the synthetic data. On this note, with the same number
of split on every dimension in R-tree, smaller data set will obtain a shallower index tree. As we do
not allow the creation of empty leaf node in R-tree, the visited percentage converges even though the
dimension still increases.

5 Reference

[1] Vincent, N.R.S.K.F., Nearest Neighbor Queries* Nick Roussopoulos Stephen Kelley Fréedéeric Vincent
Department of Computer Science University of Maryland College Park, MD 20742.

[2] Weber, R., Schek, H.J. and Blott, S., 1998, August. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In VLDB (Vol. 98, pp. 194-205).

[3] S. T. Leutenegger, M. A. Lopez and J. Edgington, ”STR: a simple and efficient algorithm for R-
tree packing,” Proceedings 13th International Conference on Data Engineering, Birmingham, UK, 1997, pp.
497-506. doi: 10.1109/ICDE.1997.582015

8

