
Insights into Algorithm
Ge Shi, Oct 4, 2022

1. Resources 3
2. LinkedList 3

2.1. Reverse a LinkedList 3
2.2. Detect Cycle and Find Start Point of LinkedList 4
2.3. Delete Node with Target Value 5
2.4. Double LinkedList 5
2.5. Tree-based LinkedList 7

3. Sort/Search 7
3.1. Customize Compare Key 7
3.2. Dutch National Flag Sorting 10
3.3. Kth Partition 11
3.4. Quick Sort 12
3.5. Bucket/Counting Sorting 13
3.6. Pigeonhole Sort 15
3.7. Merge Sort 16
3.8. Partial Sort to Find k-th Element 18
3.9. Binary Search 18
3.10. Set Cover 22

4. String 23
4.1. String Rotation 23
4.2. Boyer-Moore (BM) Algorithm 24
4.3. Knuth–Morris–Pratt (KMP) Algorithm 24
4.4. Rabin-Karp (RK) algorithm 25
4.5. Prefix Count 27

5. Array/Matrix 29
5.1. Add up the Digits of an Integer 29
5.2. Remove Elements of a value from Array 29
5.3. V Shape Array Sort (Two Pointers) 29
5.4. Maximum Subarray Problem 30
5.5. 2D Matrix Rotation/Spiral 31
5.6. Stack 33
5.7. Heap 33
5.8. Monotonic Queue/Stack (Deque) 34

5.9. Greedy 36
6. Dynamic Programming 38

6.1. Toxonomization 38
6.2. Knapsack Problem 39
6.3. 0-1 Knapsack Problem 39
6.4. Complete Knapsack Problem 40
6.5. Two Pointers 41
6.6. Merge Interval 43
6.7. Cycle/Intersection Detection 45
6.8. Sliding Window 45
6.9. Finite State Machine 48
6.10. Bit Mask 48
6.11. Game Theory 49
6.12. Simulation 51

7. Tree 51
7.1. Resources 51
7.2. Binary Tree Traversal 51
7.3. Binary Tree Construction 53
7.4. Binary Search Tree 54
7.5. Trie 57
7.6. DFS 61
7.7. BackTrack 64
7.8. DFS Memorization 69
7.9. BFS 72
7.10. BFS Memorization 72
7.11. Binary Indexed Tree 72
7.12. Segment Tree 72
7.13. Combination 76
7.14. Permutation 77

8. Graph 78
8.1. Resources 78
8.2. Connected Components 79
8.3. Union Find 80
8.4. Minimum Spanning Tree 82
8.5. DFS 87
8.6. BFS 89
8.7. Dijkstra's Algorithm 90
8.8. A* Algorithm 92
8.9. Bellman-Ford’s Algorithm 93

8.10. Floyd-Warshall Algorithm 95
8.11. Bipartite Graph 96
8.12. Detect Cycle in an undirected graph 99
8.13. Detect Cycle in a directed graph 100
8.14. Topological Sort (Kahn’s algorithm) 102
9. Eulerian Path (Hierholzer's Algorithm) 106
10. Hamiltonian Path (Hierholzer's Algorithm) 107

11. General 109
11.1. Divide and Conquer 109
11.2. Streaming 110
11.3. Hash Function 110
11.4. Number Theory 110
11.5. Probability & Statistics 110
11.6. Voting 112
11.7. Reservoir Sampling 113
11.8. Bitwise Operation 114

1. Resources
LeetCode Interview Top-150
Leetcode面试高频题分类刷题总结

Coderust: Hacking the Coding Interview

2. LinkedList
2.1. Reverse a LinkedList

Consider to use recursive method if apply a sequence of same actions to subsequences of
linked lists
Recursive:

def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:

if not head or not head.next:

return head

newhead = self.reverseList(head.next)

head.next.next = head

head.next = None

return newhead

Iterative:

https://leetcode.com/studyplan/top-interview-150/
https://zhuanlan.zhihu.com/p/349940945
https://www.educative.io/courses/coderust-hacking-the-coding-interview?affiliate_id=5749180081373184

def reverseLinkedList(self, head, k):

Reverse k nodes of the given linked list.

This function assumes that the list contains

atleast k nodes.

new_head, ptr = None, head

while k:

Keep track of the next node to process in the

original list

next_node = ptr.next

Insert the node pointed to by "ptr"

at the beginning of the reversed list

ptr.next = new_head

new_head = ptr

Move on to the next node

ptr = next_node

Decrement the count of nodes to be reversed by 1

k -= 1

Return the head of the reversed list

return new_head

Time Complexity: O(n)
Space Complexity: O(1)

Examples:
LC 92. Reverse Linked List II
LC 25. Reverse Nodes in k-Group

2.2. Detect Cycle and Find Start Point of LinkedList
Use fast and slow pointers to check if there is a cycle and where the cycle starts.

def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:

fast = head

slow = head

while fast and fast.next:

fast = fast.next.next

https://leetcode.com/problems/reverse-linked-list-ii/
https://leetcode.com/problems/reverse-nodes-in-k-group/

slow = slow.next

if slow == fast:

break

if not fast or not fast.next:

return None

slow = head

while slow!=fast:

fast = fast.next

slow = slow.next

return slow

Examples:
LC 141. Linked List Cycle

2.3. Delete Node with Target Value
Note:

1) Use a dummy head pointer to be the father of head
2) Let the current pointer pointing to the dummy head
3) Always decide on the next pointer of the current pointer
4) Return the child of dummy head (especially when you do deletion, consider if head is the

one node that should be deleted.)

class Solution:

def removeElements(self, head: Optional[ListNode], val: int) ->

Optional[ListNode]:

pre = ListNode(val=-1, next=head)

cur = pre

while cur.next:

if cur.next.val == val:

cur.next = cur.next.next

else:

cur = cur.next

return pre.next

2.4. Double LinkedList
A doubly linked list (DLL) is a type of linked list where each node contains a data element and
two pointers (or references) to the next and previous nodes in the sequence. This structure
allows traversal in both directions (forward and backward), making certain operations more
flexible compared to a singly linked list.

https://leetcode.com/problems/linked-list-cycle/

Using dummy nodes for the head and tail of a doubly linked list can simplify boundary condition
handling, such as inserting or removing nodes when the list is empty or has only one element.

Code Template:

class Node:

def __init__(self, data=None):

self.data = data

self.prev = None

self.next = None

class DoublyLinkedList:

def __init__(self):

Dummy nodes

self.head = Node() # Dummy head

self.tail = Node() # Dummy tail

Initialize the list to point dummy head to dummy tail

self.head.next = self.tail

self.tail.prev = self.head

def add_node_to_end(self, node):

prev_tail = self.tail.prev

node.next = self.tail

self.tail.prev = node

prev_tail.next = node

node.prev = prev_tail

def add_node_to_front(self, node):

next_head = self.head.next

node.next = next_head

self.head.next = node

next_head.prev = node

node.prev = self.head

def add_to_front(self, data):

new_node = Node(data)

new_node.next = self.head.next

new_node.prev = self.head

self.head.next.prev = new_node

self.head.next = new_node

def add_to_end(self, data):

new_node = Node(data)

new_node.prev = self.tail.prev

new_node.next = self.tail

self.tail.prev.next = new_node

self.tail.prev = new_node

def remove_node(self, node):

node.next.prev = node.prev

node.prev.next = node.next

def remove_data(self, data):

current = self.head.next

while current != self.tail:

if current.data == data:

current.prev.next = current.next

current.next.prev = current.prev

return

current = current.next

print("Node not found.")

def update_data(self, target_data, new_data):

current = self.head.next

while current != self.tail:

if current.data == target_data:

current.data = new_data

return

current = current.next

print("Node not found.")

Examples:
LC 146. LRU Cache

2.5. Tree-based LinkedList

3. Sort/Search
3.1. Customize Compare Key

Lambda function:

sorted_arr = sorted(arr, key = lambda num: abs(num))

https://leetcode.com/problems/lru-cache/

Uni-value:

Define the custom key function

def custom_key(x):

return abs(x)

Sort using the custom key function

sorted_arr = sorted(arr, key=custom_key)

Bi-value:

from functools import cmp_to_key

Define the custom comparator function

def custom_comparator(x, y):

if x < y:

return -1

elif x > y:

return 1

else:

return 0

List to be sorted

arr = [3, 1, 4, 1, 5, 9, 2, 6]

Convert the comparator to a key function

key_func = cmp_to_key(custom_comparator)

Sort using the custom comparator

sorted_arr = sorted(arr, key=key_func)

Class Implementation

from functools import cmp_to_key

class AbsoluteValueComparator:

def __call__(self, x, y):

if abs(x) < abs(y):

return -1

elif abs(x) > abs(y):

return 1

else:

return 0

List to be sorted

arr = [-3, 1, -2, 4, 0, -1]

Create an instance of the comparator class

comparator = AbsoluteValueComparator()

Convert the comparator to a key function

key_func = cmp_to_key(comparator)

Sort using the comparator class

sorted_arr = sorted(arr, key=key_func)

To define a class with a custom comparator in Python, you can implement special methods that
define how instances of the class should be compared. The most common methods are __lt__
(less than), __le__ (less than or equal to), __eq__ (equal to), __ne__ (not equal to), __gt__
(greater than), and __ge__ (greater than or equal to).

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def __lt__(self, other):

return self.age < other.age

def __le__(self, other):

return self.age <= other.age

def __eq__(self, other):

return self.age == other.age

def __ne__(self, other):

return self.age != other.age

def __gt__(self, other):

return self.age > other.age

def __ge__(self, other):

return self.age >= other.age

def __repr__(self):

return f"{self.name} ({self.age})"

Example usage

people = [Person("Alice", 30), Person("Bob", 25), Person("Charlie", 35)]

sorted_people = sorted(people)

Argsort based on given iterable items:

sentences = ["apple", "banana", "cherry"]

times = [5, 3, 5]

indices = list(range(len(sentences)))

sorted_indices = sorted(indices, key=lambda x: (-times[x], setences[x]))

Sort the sentences according to the specified rules and return the

desired sorted indices.

3.2. Dutch National Flag Sorting
The most common solution is known as the three-way partitioning algorithm or the three-way
quicksort. It uses three pointers to partition the array into three sections:

def sortColors(self, nums: List[int]) -> None:

"""

Dutch National Flag problem solution.

"""

For all idx < p0 : nums[idx < p0] = 0

curr is an index of elements under consideration

p0 = curr = 0

For all idx > p2 : nums[idx > p2] = 2

p2 = len(nums) - 1

while curr <= p2:

if nums[curr] == 0:

nums[p0], nums[curr] = nums[curr], nums[p0]

p0 += 1

curr += 1

elif nums[curr] == 2:

nums[curr], nums[p2] = nums[p2], nums[curr]

p2 -= 1

else:

curr += 1

75. Sort Colors

3.3. Kth Partition
Creates a copy of the array and partially sorts it in such a way that the value of the element in
k-th position is in the position it would be in a sorted array. In the output array, all elements
smaller than the k-th element are located to the left of this element and all equal or greater are
located to its right. The ordering of the elements in the two partitions on the either side of the
k-th element in the output array is undefined.

def partition(arr, left, right):

pivot = arr[right] # or pivot = random.choice(arr)

i = left - 1

for j in range(left, right):

if arr[j] < pivot:

i += 1

arr[i], arr[j] = arr[j], arr[i]

arr[i + 1], arr[right] = arr[right], arr[i + 1]

return i + 1

def partition_around_k(arr, k):

left, right = 0, len(arr) - 1

while left < right:

pivot_index = partition(arr, left, right)

if pivot_index == k:

return arr

elif pivot_index < k:

left = pivot_index + 1

else:

right = pivot_index - 1

Test the partition_around_k implementation

https://leetcode.com/problems/sort-colors/

arr = [3, 2, 1, 5, 4]

k = 2

partitioned_array = partition_around_k(arr, k-1)

Partition Function: This function rearranges the elements in the array such that elements less
than the pivot are on the left, and elements greater than or equal to the pivot are on the right. It
returns the index of the pivot element.

Partition Around k Function: This function repeatedly partitions the array until the pivot
element is at the k-th position. It adjusts the search range (left and right) based on the position
of the pivot.

It can be used for Quickselect, also known as Hoare's selection algorithm, is an algorithm for
finding the 𝑘_𝑡ℎ smallest (or largest) element in an unordered list. It is significant because it has
an average runtime of 𝑂(𝑛).

Steps:
● Partition the Array: Choose a pivot element and partition the array into two subarrays:

elements less than the pivot and elements greater than or equal to the pivot.
● Determine the Position: Determine the position of the pivot element in the sorted array.
● Recurse: If the pivot's position matches k, return the pivot element. Otherwise, recurse

into the appropriate partition that contains the k-th smallest element.

Time Complexity: Best O(n), Average O(n), Worst Case O(n^2)
Space Complexity: In-place O(1), recursive call stack O(logn), O(n) in the worst case

215. Kth Largest Element in an Array

3.4. Quick Sort
Quick Sort is a highly efficient sorting algorithm and is based on the divide-and-conquer
approach. It works by selecting a 'pivot' element from the array and partitioning the other
elements into two sub-arrays, according to whether they are less than or greater than the pivot.
The sub-arrays are then sorted recursively.

Steps:
● Choose a Pivot: Select an element from the array as the pivot. Common strategies

include choosing the first element, the last element, a random element, or the median.
● Partition the Array: Rearrange the elements so that all elements less than the pivot are

on its left, and all elements greater than or equal to the pivot are on its right.
● Recursively Apply: Apply the above steps to the sub-arrays of elements with smaller

values and separately to the sub-array of elements with greater values.

https://leetcode.com/problems/kth-largest-element-in-an-array/

def partition(arr, low, high):

pivot = arr[high]

i = low - 1

for j in range(low, high):

if arr[j] <= pivot:

i += 1

arr[i], arr[j] = arr[j], arr[i]

arr[i + 1], arr[high] = arr[high], arr[i + 1]

return i + 1

def quick_sort(arr, low, high):

if low < high:

pi = partition(arr, low, high)

quick_sort(arr, low, pi - 1)

quick_sort(arr, pi + 1, high)

Test the quick sort implementation

arr = [10, 7, 8, 9, 1, 5]

quick_sort(arr, 0, len(arr) - 1)

The choice of pivot and partitioning strategy significantly affects its performance, especially in
the worst case.

Time Complexity: best O(nlogn), average O(nlogn), worst O(n^2)
Space Complexity: O(logn)
Stability: The algorithm is not stable.

3.5. Bucket/Counting Sorting
Counting sort is a non-comparison sorting algorithm. It can be used to sort when the range of
the numbers are bounded.
X_shift = X_original - lowestValue

Counting Sort: Efficient when the range of input values (k) is not significantly larger than the
number of elements (n). Uses extra space proportional to the range of the input values.

Steps:

● Find the range of the input values.
● Create a count array to store the count of each unique value.
● Modify the count array by adding the previous counts (cumulative sum).
● Build the output array by placing the elements in their correct positions.

def counting_sort(arr):

max_val = max(arr)

min_val = min(arr)

range_of_elements = max_val - min_val + 1

count = [0] * range_of_elements

output = [0] * len(arr)

for num in arr:

count[num - min_val] += 1

for i in range(1, len(count)):

count[i] += count[i - 1]

for num in reversed(arr):

output[count[num - min_val] - 1] = num

count[num - min_val] -= 1

for i in range(len(arr)):

arr[i] = output[i]

Bucket Sort: Efficient for uniformly distributed data. The time complexity depends on the
distribution of elements across the buckets. Uses extra space proportional to the number of
buckets and elements.

Steps:
● Create an array of empty buckets.
● Distribute the elements into buckets based on a hash function.
● Sort each bucket individually.
● Concatenate the sorted buckets.

def bucket_sort(arr, bucket_size=5):

if len(arr) == 0:

return arr

min_val, max_val = min(arr), max(arr)

bucket_count = (max_val - min_val) // bucket_size + 1

buckets = [[] for _ in range(bucket_count)]

for num in arr:

buckets[(num - min_val) // bucket_size].append(num)

sorted_array = []

for bucket in buckets:

sorted_array.extend(sorted(bucket))

for i in range(len(arr)):

arr[i] = sorted_array[i]

Algorithm Time
Complexity

(Best)

Time
Complexity
(Average)

Time
Complexity
(Worst)

Space
Complexity

Counting Sort O(n+k) O(n+k) O(n+k) O(n+k)

Bucket Sort O(n+k) O(n+k) O(n^2) O(n+k)

Counting Sort: Efficient when the range of input values (k) is not significantly larger than the
number of elements (n). Uses extra space proportional to the range of the input values.

Bucket Sort: Efficient for uniformly distributed data. The time complexity depends on the
distribution of elements across the buckets. Uses extra space proportional to the number of
buckets and elements.

3.6. Pigeonhole Sort
Pigeonhole sort is a non-comparison-based sorting algorithm that is efficient when the range of
key values (difference between the maximum and minimum values) is not significantly larger
than the number of elements to be sorted. The algorithm is named after the pigeonhole
principle, which states that if n items are put into m containers, with n>m, then at least one
container must contain more than one item.

Steps:
● Find the minimum and maximum values in the array.
● Calculate the range of the values.
● Create a list of empty pigeonholes (each representing a potential key value).
● Place each element into its corresponding pigeonhole.
● Concatenate the elements from the pigeonholes back into the original array.

def pigeonhole_sort(arr):

Find the minimum and maximum values in the array

min_val = min(arr)

max_val = max(arr)

Calculate the range of the values

size = max_val - min_val + 1

Create empty pigeonholes

holes = [[] for _ in range(size)]

Place each element in its corresponding pigeonhole

for num in arr:

holes[num - min_val].append(num)

Concatenate the elements from the pigeonholes back into the original

array

index = 0

for hole in holes:

for num in hole:

arr[index] = num

index += 1

Test the pigeonhole sort implementation

arr = [8, 3, 2, 7, 4, 6, 8]

pigeonhole_sort(arr)

Time Complexity: O(n+k), where n is the number of elements and k is the range of the input.
Space Complexity: O(n+k) for the pigeonholes.
Stability: The algorithm is stable.

3.7. Merge Sort
Time Complexity: worst O(nlogn)
Space Complexity: O(n+logn)
It uses divide and conquer strategy, firstly you find the middle position of the iterable items and
divide it, then merge the two parts.

def merge_sort(arr, left, right):

if left < right:

mid = (left + right) // 2

Sort first and second halves

merge_sort(arr, left, mid)

merge_sort(arr, mid + 1, right)

merge(arr, left, mid, right)

def merge(arr, left, mid, right):

Create temporary arrays to hold the two halves to merge

left_subarray = arr[left:mid + 1]

right_subarray = arr[mid + 1:right + 1]

Initialize pointers for left_subarray, right_subarray and the merged

array

left_index, right_index = 0, 0

merged_index = left

Merge the temporary arrays back into the original array

while left_index < len(left_subarray) and right_index <

len(right_subarray):

if left_subarray[left_index] <= right_subarray[right_index]:

arr[merged_index] = left_subarray[left_index]

left_index += 1

else:

arr[merged_index] = right_subarray[right_index]

right_index += 1

merged_index += 1

Copy the remaining elements of left_subarray, if any

while left_index < len(left_subarray):

arr[merged_index] = left_subarray[left_index]

left_index += 1

merged_index += 1

Copy the remaining elements of right_subarray, if any

while right_index < len(right_subarray):

arr[merged_index] = right_subarray[right_index]

right_index += 1

merged_index += 1

LC 21. Merge Two Sorted Lists
LC 148. Sort List

3.8. Partial Sort to Find k-th Element
Heap is good for finding the k-th largest or smallest element without sorting the entire array. The
idea is to keep a heap of size k, popping out all the elements that do not meet the requirement.

Time Complexity: O(nlogk)
Space Complexity: O(k)

Keep in mind that to find the k-th largest element, you use a min heap, to find the k-th smallest
element, you use a max heap.

def findKthLargest(self, nums, k):

heap = []

for num in nums:

heapq.heappush(heap, num)

if len(heap) > k:

heapq.heappop(heap)

return heap[0]

3.9. Binary Search
Steps:

● Pre-processing - Sort if collection is unsorted.
● Binary Search - Using a loop or recursion to divide search space in half after each

comparison.
● Post-processing - Determine viable candidates in the remaining space.

易错点

Return: 找到target的index，equal or less than target，equal or greater than target

https://leetcode.com/problems/merge-two-sorted-lists/
https://leetcode.com/problems/sort-list/

左闭右闭，左闭右开

Binary search in array int[] nums
左闭右开

input: int[] nums, int target

int left = 0;

int right = nums.length;

while(left<right) {

mid = left + (high-low)/2;

if (nums[mid]==target) break;

if (nums[mid]<target)

low = mid + 1;

else

right = mid;

}

alternative 左闭右闭

int low = 0;

int high = nums.length-1;

while(left<=right) {

mid = left + (high-low)/2;

if (nums[mid]==target) break;

if (nums[mid]<target)

low = mid + 1;

else

right = mid - 1;

}

alternative

int low = 0;

int high = nums.length-1;

while(left<right) {

mid = right - (high-low)/2;

if (nums[mid]==target) break;

if (nums[mid]<target)

low = mid + 1;

else

right = mid;

}

Return left;

if you want to find the index of the value that is equal or greater to

the target value, you can do

int low = 0;

int high = nums.length;

int ans = nums.length;

while(left<right) {

mid = low + (high-low)/2;

if (nums[mid]>=target) # change to < if you’re looking for strict greater

ans = mid

right = mid;

Else

left = mid + 1;

}

return ans;

Binary search for the peak of V style non-monotone array:

int low = 0;

int high = nums.length()-1;

long ans = getCost(nums, target, nums[0]);

while(low<high) {

int mid = low + (high-low)/2;

long avg_cost1 = getCost(nums, target, mid);

long avg_cost2 = getCost(nums, target, mid+1);

ans = Math.min(avg_cost1, avg_cost2);

if(avg_cost1>avg_cost2)

low = mid+1;

else

high = mid;

}

return ans;

Binary Search Explore Card

Template: Check if a target value exists in the arr, if yes, return the index, otherwise -1

def binarySearch(nums, target):

"""

:type nums: List[int]

:type target: int

:rtype: int

"""

if len(nums) == 0:

return -1

left, right = 0, len(nums) - 1

while left <= right:

https://leetcode.com/explore/learn/card/binary-search/

mid = (left + right) // 2

if nums[mid] == target:

return mid

elif nums[mid] < target:

left = mid + 1

else:

right = mid - 1

End Condition: left > right

return -1

Template 2: Search for the first element that’s greater than or equal to target

def binarySearch(nums, target):

"""

:type nums: List[int]

:type target: int

:rtype: int

"""

if len(nums) == 0:

return -1

left, right = 0, len(nums) - 1 # right = len(nums) if may not exist

while left < right:

mid = left + (right - left) // 2

if nums[mid] < target: # if you want to search for the first

element strictly greater than target, use “nums[mid] <= target”

left = mid + 1

else:

right = mid

return left # If does not exist left = len(nums)

Template 3: Search for the last element that’s smaller than or equal to target

def binarySearch(nums, target):

"""

:type nums: List[int]

:type target: int

:rtype: int

"""

if len(nums) == 0:

return -1

left, right = 0, len(nums) - 1 # left = -1 if may not exist

while left < right:

mid = right - (right - left) // 2

if nums[mid] > target: # if you want to search for the first element

strictly smaller than target, use “nums[mid] <= target”

right = mid - 1

else:

left = mid

return right # If does not exist right = -1

Left and right initualization is decided by if target could be out of the bounds.
Examples:
4. Median of Two Sorted Arrays

3.10. Set Cover
The set cover problem is finding the smallest range that covers at least one element from each
of the given sublists. This can be solved using a sliding window (two-pointer) approach after
sorting the individual elements from each sublist.

The key point the solve such questions is:
● Sort each sublist
● Sort the list based on the starting/ending point
● Use pointers to point to the head of each sublist
● Compare the ending of former range and the starting of latter range

● Type I, the sublist is a list of integers:
An example question can be: LC 632. Smallest Range Covering Elements from K Lists

def smallestRange(self, nums: List[List[int]]) -> List[int]:

ans = [0, inf]

cur_max = max([num_list[0] for num_list in nums])

pointers = [(num_list[0], 0, i) for i, num_list in enumerate(nums)]

pointers.sort(key = lambda x: x[0])

while pointers:

val, pos, loc = heappop(pointers)

if cur_max - val < ans[1]-ans[0]:

ans = [val, cur_max]

if pos<len(nums[loc])-1:

https://leetcode.com/problems/median-of-two-sorted-arrays/
https://leetcode.com/problems/smallest-range-covering-elements-from-k-lists/

heappush(pointers, (nums[loc][pos+1], pos+1, loc))

cur_max = max(nums[loc][pos+1], cur_max)

else:

break

return ans

Examples:
LC 632. Smallest Range Covering Elements from K Lists

● Type II, the sublist is a pair of integers indicating a range:
An example question can be: LC 452. Minimum Number of Arrows to Burst Balloons

def findMinArrowShots(self, points: List[List[int]]) -> int:

points.sort(key=lambda x:(x[1], x[0]))

n = len(points)

ends = points[0][1]

ans = 0

for i in range(n):

if points[i][0] <= ends:

continue

ans += 1

ends = points[i][1]

ans += 1

return ans

Examples:
LC 452. Minimum Number of Arrows to Burst Balloons

4. String
4.1. String Rotation

Consider a string S = "helloworld". Now, given another string T = "lloworldhe", can we figure out
if T is a rotated version of S? By rotated version, we mean taking S and shifting it any number of
spaces (with wrap around). For example, if S = "abc" and we shifted it to the left once, we would
have "bca".

Yes, we check if T is a rotated version of S by checking if it is a substring of S + S. This is
because S + S contains all of the rotations of S.

https://leetcode.com/problems/smallest-range-covering-elements-from-k-lists/
https://leetcode.com/problems/minimum-number-of-arrows-to-burst-balloons/
https://leetcode.com/problems/minimum-number-of-arrows-to-burst-balloons/

Let t = s + s. We can easily and efficiently check all possible rotations by removing the first
and last character of t, then checking if s is a substring of t.

Example:
LC 459. Repeated Substring Pattern

4.2. Boyer-Moore (BM) Algorithm

4.3. Knuth–Morris–Pratt (KMP) Algorithm
Knuth Morris Pratt (KMP) String Search Algorithm - tutorial with failure function in Java

The KMP algorithm is used to match the pattern in the reference string.
There are mainly two steps:

1. Build T array from pattern, T array is used to store the maximum length of proper prefix
and suffix ending at index i

2. Search pattern in reference string with the assistance of T array
Note:

1. T[0], have to be 0, pattern should be at lease length of 2, left and right pointer need to be
initialized as 0 and 1

2. In searching, we use two pointers and while looping, remember to track if any pointer
points to a position that is greater than either the pattern string or the reference string

def strStr(self, reference: str, pattern: str) -> int:

def build_kmp(W: str):

T = [0]*len(W)

n = len(W)

left, right = 0, 1

while right < n:

if W[right]==W[left]:

left+=1

T[right] = left

right+=1

elif left > 0:

left = T[left-1]

else:

T[right]=0

right+=1

return T

https://leetcode.com/problems/repeated-substring-pattern/
https://www.youtube.com/watch?v=EL4ZbRF587g

T = build_kmp(pattern)

This is the search part

i, j = 0, 0

while i<len(reference):

while j<len(pattern) and i<len(reference) and reference[i] ==

pattern[j]:

j+=1

i+=1

if j==len(pattern):

return i-len(pattern)

elif i==len(reference):

return -1

elif j>0:

j=T[j-1]

else:

i+=1

return -1

Examples:
LC 28. Find the Index of the First Occurrence in a String
LC 1392. Longest Happy Prefix

4.4. Rabin-Karp (RK) algorithm
Rolling Hash Function Tutorial, used by Rabin-Karp String Searching Algorithm
The Rabin-Karp (RK) algorithm is a string searching algorithm that uses hashing to find a
pattern within a text efficiently. It is particularly useful for searching multiple patterns at once.

Hashing: The core idea of the Rabin-Karp algorithm is to use a hash function to convert a string
(pattern and substrings of the text) into a numerical value. This allows for efficient comparison of
the pattern with substrings of the text.
Rolling Hash: To efficiently compute the hash of the next substring in the text without
recomputing from scratch, the Rabin-Karp algorithm uses a rolling hash function.

Hash Function:
A common choice is a polynomial hash function. The hash value for a string S of length m is
computed as follows:

hash(S)=(S[0]⋅d^(m−1)+S[1]⋅d^(m−2)+…+S[m−1]⋅d^0)mod(q)

https://leetcode.com/problems/find-the-index-of-the-first-occurrence-in-a-string/
https://leetcode.com/problems/longest-happy-prefix/
https://www.youtube.com/watch?v=BfUejqd07yo

Rolling Hash:
The rolling hash allows efficient computation of the hash value for the next substring. If the
current substring is T[i..i+m−1] and the next substring is T[i+1..i+m], the rolling hash is updated
as:

hash(T[i+1..i+m])=(d⋅(hash(T[i..i+m−1])−T[i]⋅d^(m−1))+T[i+m])mod(q)

Time complexity: Average Case: O(n+m), Worst Case: O(nm)
Space complexity: O(1)

def rabin_karp(text, pattern):

d = 256 # Number of characters in the input alphabet

q = 101 # A prime number

m = len(pattern)

n = len(text)

p = 0 # Hash value for pattern

t = 0 # Hash value for text

h = 1

The value of h would be "pow(d, m-1) % q"

for i in range(m-1):

h = (h * d) % q

Calculate the hash value of the pattern and first window of text

for i in range(m):

p = (d * p + ord(pattern[i])) % q

t = (d * t + ord(text[i])) % q

Slide the pattern over text one by one

for i in range(n - m + 1):

Check the hash values of the current window of text and pattern

if p == t:

Check for characters one by one

if text[i:i+m] == pattern:

print(f"Pattern found at index {i}")

Calculate hash value for the next window of text

if i < n - m:

t = (d * (t - ord(text[i]) * h) + ord(text[i + m])) % q

We might get a negative value of t, convert it to positive

if t < 0:

t += q

Example usage

text = "GEEKS FOR GEEKS"

pattern = "GEEK"

rabin_karp(text, pattern)

Examples:
LC 28. Find the Index of the First Occurrence in a String

4.5. Prefix Count

Find the prefix of a string that exists in the same string array with nested loops

input: String[] members

map key is a member string, value is a list of prefix without replicas

HashMap<String, HashSet<String>> map = new HashMap<>();

for(int i=0;i<members.length;i++) {

HashSet<String> prefixSet = new HashSet<>();

for(int j=0;j<members.length;j++) {

if(members[i].contains(members[j]) &&

!members[i].equals(members[j])) {

prefixSet.add(members[j]);

}

}

map.putIfAbsent(members[i], prefixSet);

}

Count of occurrences of strings in a string array (discount prefix) and sort them

input: String[] members, String[] dialogues

map key is a member string, value is a list of prefix without replicas

Count string occurrences when the string id consists of numbers

HashMap<String, Integer> count = new HashMap<>();

for(String dialogue : dialogues) {

for(String member : members) {

if(dialogue.contains(member)) {

the next digit of the id of a prefix string is still a number

digit, but not for a entire id

int index =

dialogue.charAt(dialogue.indexOf(member)+member.length()) - '0';

https://leetcode.com/problems/find-the-index-of-the-first-occurrence-in-a-string/

it means it’s just a prefix of another member

if(index >= 0 && index <= 9) continue;

count.put(member, count.getOrDefault(member, 0)+1);

}

}

}

define a comparator of map entry class

class EntryCompare implements Comparator<Map.Entry<String, Integer>>

{

public int compare(Map.Entry<String, Integer> m1, Map.Entry<String,

Integer> m2)

{

if (m1.getValue() == m2.getValue()) {

return m1.getKey().compareTo(m2.getKey());

}

sort integers from large to small

return Integer.compare(m2.getValue(), m1.getValue())

}

}

EntryCompare entryComparator = new EntryCompare();

List<Map.Entry<String, Integer>> entryList = new LinkedList<>();

for(Map.Entry<String, Integer> entrySet : count.entrySet()) {

entryList.add(entrySet);

}

sort the entry list from large to small with regard to count numbers and

from small to large with regard to lexical order

Collections.sort(entryList, entryComparator);

Convert entry list to a string array with defined format

String[] ans = new String[entryList.size()];

for(int i=0;i<entryList.size();i++) {

Map.Entry<String, Integer> entrySet = entryList.get(i);

StringBuilder str = new StringBuilder();

str.append(entrySet.getKey());

str.append("=");

str.append(entrySet.getValue());

ans[i] = str.toString();

}

return ans;

Alternative more efficient code for sorting

List<String> entryList = new ArrayList<>(count.keySet());

Collections.sort(entryList, (w1, w2) -> count.get(w1).equals(count.get(w2))

? w1.compareTo(w2) : count.get(w2) - count.get(w1));

return entryList;

5. Array/Matrix
Youtube: Kadane's Algorithm to Maximum Sum Subarray Problem
Maximum contiguous circular sum

5.1. Add up the Digits of an Integer

K = sum(int(b) for b in str(num))

5.2. Remove Elements of a value from Array

left = 0 # keep track of the position to put nonzero number to

for i in range(len(nums)):

if nums[i]==target:

continue

nums[left] = nums[i] # move the nonzero value to left

left += 1

27. Remove Element

5.3. V Shape Array Sort (Two Pointers)

n = len(nums)

left = 0

right = n-1

ans = []

while left<=right:

if abs(nums[left])>=abs(nums[right]):

ans.append(nums[left]**2)

left += 1

else:

ans.append(nums[right]**2)

right -= 1

return ans[::-1]

https://www.youtube.com/watch?v=86CQq3pKSUw
https://www.geeksforgeeks.org/maximum-contiguous-circular-sum/
https://leetcode.com/problems/remove-element/

5.4. Maximum Subarray Problem
“Maximum Subarray Problem” for a regular array (not circular), can be solved by Kadane’s
algorithm (an iterative dynamic programming algorithm).
The maximum subarray problem is the task of finding the largest possible sum of a contiguous
subarray, within a given one-dimensional array A[1…n] of numbers.

Define two-variable:
currSum which stores maximum sum ending here. Initialize currSum with 0
maxSum which stores the maximum sum so far. Initialize maxSum with INT_MIN

Iterate over the array:
add the value of the current element to currSum and check
If currSum is less than zero, make currSum equal to zero.
If currSum is greater than maxSum, update maxSum equals to currSum.

Return the value of maxSum.

Variant 1: allow empty subarray

int kadane(int a[], int n)

{

int max_so_far = 0, max_ending_here = 0;

int i;

for (i = 0; i < n; i++)

{

if (max_ending_here + a[i] < 0)

max_ending_here = 0;

else:

max_ending_here += a[i]

max_so_far = max(max_so_far, max_ending_here);

}

return max_so_far;

}

Variant 2: Do not allow empty subarray

int kadane(int a[], int n)

{

int max_so_far = a[0], max_ending_here = 0;

int i;

for (i = 0; i < n; i++)

{

if (max_ending_here < 0)

max_ending_here = a[i];

else:

max_ending_here += a[i]

max_so_far = max(max_so_far, max_ending_here);

}

return max_so_far;

}

Time complexity: O(N), Where N is the size of the array.
Space complexity: O(1)

For a circular array, the maximum subarray sum can be either the maximum "normal sum"
which is the maximum sum of the ordinary array or a "special sum" which is the maximum sum
of a prefix sum and a suffix sum of the ordinary array where the prefix and suffix don't overlap.
We can calculate both the normal sum and the special sum and return the larger one.

Instead of thinking about the "special sum" as the sum of a prefix and a suffix, we can think
about it as the sum of all elements, minus a subarray in the middle. In this case, we want to
minimize this middle subarray's sum, which we can calculate using Kadane's algorithm as well.

“special sum” = total - minimum “normal contiguous subarray’s sum”

class Solution {

public int maxSubarraySumCircular(int[] nums) {

int curMax = 0, curMin = 0, sum = 0, maxSum = nums[0], minSum =

nums[0];

for (int num : nums) {

curMax = Math.max(curMax, 0) + num;

maxSum = Math.max(maxSum, curMax);

curMin = Math.min(curMin, 0) + num;

minSum = Math.min(minSum, curMin);

sum += num;

}

return sum == minSum ? maxSum : Math.max(maxSum, sum - minSum);

}

}

5.5. 2D Matrix Rotation/Spiral
Spiral Order Traversal:

● Determine the number of sub-matrix, row and col sizes

● Loop through the current border
○ Traverse the top row from left to right.
○ Traverse the right column from top to bottom.
○ Traverse the bottom row from right to left.
○ Traverse the left column from bottom to top.

● Repeat the above steps for the inner sub-matrix.
● Edge case when the inner matrix degrade to a vector.

Tricks
● Determine one col or row that is static, they other dimension can be variant
● When switch row to col or vise versa, the variant dimension changes, the starting point

for the variant dimension is the same as the last static dimension

def spiralOrder(self, matrix: List[List[int]]) -> List[int]:

n, m = len(matrix), len(matrix[0])

ans = []

row_size = m

col_size = n

i = 0

while i < min(m,n)//2:

for k in range(col_size-1):

ans.append(matrix[i][i+k])

for k in range(row_size-1):

ans.append(matrix[i+k][n-1-i])

for k in range(col_size-1):

ans.append(matrix[m-1-i][n-1-i-k])

for k in range(row_size-1):

ans.append(matrix[m-1-i-k][i])

row_size -= 2

col_size -= 2

i += 1

if row_size==1 and col_size==1:

ans.append(matrix[m//2][n//2])

elif row_size>1 and col_size==1:

for k in range(row_size):

ans.append(matrix[i+k][n//2])

elif col_size>1 and row_size==1:

for k in range(col_size):

ans.append(matrix[m//2][i+k])

return ans

Examples:

LC 54. Spiral Matrix
LC 48. Rotate Image

5.6. Stack

Examples:
LC 224. Basic Calculator

5.7. Heap

Heap is good for finding the k-th largest or smallest element without sorting the entire array. The
idea is to keep a heap of size k, popping out all the elements that do not meet the requirement.

Time Complexity: O(nlogk)
Space Complexity: O(k)

Keep in mind that to find the k-th largest element, you use a min heap, to find the k-th smallest
element, you use a max heap.

Problem: Given a list of values, we want to manipulate the frequencies of them step by step and
always approach the value with max/min frequency.
Challenge:

1. You want to access and manipulate the frequency by value in O(1) time. (hashmap)
2. You want to update and order the pairs by frequency. (heap)
3. Everytime you change the frequency of a specific value, how to update the frequency of

that value in the heap since you cannot access heap in O(1) time
Solution:
You add the pair based on the frequency in counter and push it into the heap. To have duplicate
(frequency, value) pair in the heap, if you find the frequency of the tip instance in the heap is
different from that in the counter, you pop it since it’s outdated.

https://leetcode.com/problems/spiral-matrix/
https://leetcode.com/problems/rotate-image/
https://leetcode.com/problems/basic-calculator/

def mostFrequentIDs(self, nums: List[int], freq: List[int]) -> List[int]:

count = Counter()

h = []

ans = []

for num, fre in zip(nums, freq):

count[num] += fre

heappush(h, [-count[num], num])

while h and h[0][0] != -count[h[0][1]]:

heappop(h)

ans.append(-h[0][0])

return ans

Example:
● LC 347. Top K Frequent Elements
● LC 295. Find Median from Data Stream
● LC 218. The Skyline Problem
● LC 3092. Most Frequent IDs

5.8. Monotonic Queue/Stack (Deque)
用于找到当前元素左边或右边比它大或小的第一个元素，或找滑动窗口中最大值或最小值

原则：

1. 保证栈里的元素是递增或递减的，可存元素的值或下标位置

2. 新元素一定要放在栈内

栈用来存放遍历过的元素

如果要找第一个大于某元素的元素，从栈口到栈底应单调递增

如果要找第一个小于某元素的元素，从栈口到栈底应单调递减

https://leetcode.com/problems/number-of-valid-subarrays/editorial/

Monotonic stacks are used to calculate the previous smaller (greater) element and the next
smaller (greater) element in linear time complexity. Basically given an array arr in range (0,
n), return the range (i, j) in which each element is the smallest (greatest), where
arr[i]<arr[element]<=arr[j].

Edge Case - Duplicate Elements. We should make sure that we don't count the contribution by
an element twice. While finding the left boundary, we look for elements that are strictly less
than the current element. To decide the right boundary, we look for the elements which are less
than or equal to the current element.

Let’s take the monotonic increasing stack as an example:

https://leetcode.com/problems/top-k-frequent-elements/
https://leetcode.com/problems/find-median-from-data-stream/
https://leetcode.com/problems/the-skyline-problem/
https://leetcode.com/problems/most-frequent-ids/
https://leetcode.com/problems/number-of-valid-subarrays/editorial/

Step
1. Push 0 into stack
2. Iterate over the array:

a. While stack and stack[-1] < array[i]: pop from stack and update results
b. Push i into stack

class Solution {

public int monoIncStack(int[] arr) {

Stack<Integer> stack = new Stack<>();

long ans = 0;

// building monotonically increasing stack

for (int i = 0; i <= arr.length; i++) {

// when i reaches the array length, it is an indication that

// all the elements have been processed, and the remaining

// elements in the stack should now be popped out.

while (!stack.empty() && (i == arr.length || arr[stack.peek()]

>= arr[i])) {

// Notice the sign ">=", This ensures that no contribution

// is counted twice. rightBoundary takes equal or smaller

// elements into account while leftBoundary takes only the

// strictly smaller elements into account

int mid = stack.pop();

int leftBoundary = stack.empty() ? -1 : stack.peek();

int rightBoundary = i;

// Do the computation that is desired

ans = func(ans, arr, mid, leftBoundary, rightBoundary)

}

stack.push(i);

}

return ans;

}

}

python version

class Solution:

def dailyTemperatures(self, temperatures: List[int]) -> List[int]:

stack = [0]

n = len(temperatures)

ans = [0]*n

for i in range(1, n):

while stack and temperatures[i]>temperatures[stack[-1]]:

idx = stack.pop()

ans[idx] = i-idx

stack.append(i)

return ans

BST Version

class Solution:

def verifyPreorder(self, preorder: List[int]) -> bool:

min_limit = -inf

stack = []

for num in preorder:

while stack and stack[-1]<num:

min_limit = stack.pop()

if num<=min_limit:

return False

stack.append(num)

return True

Examples:
● LC 255. Verify Preorder Sequence in Binary Search Tree
● LC 84. Largest Rectangle in Histogram
● LC 42. Trapping Rain Water
● LC 239. Sliding Window Maximum

5.9. Greedy
Type 1: Given a list of possible bugget, ask for the least number of operations get to the end.
Examples are jump game 2 and video stitiching.

The basic idea is to define a variable that tracks the maximum coverage of the current step,
every bugget within the range of coverage is the potential next step. When we loop over the
array, if the loop catches up with the coverage, we need to greedyly adopt the maximum
potential next coverage, and the number of operations increase by 1.

Stitching and jump game, for a minimum count

https://leetcode.com/problems/verify-preorder-sequence-in-binary-search-tree/
https://leetcode.com/problems/largest-rectangle-in-histogram/
https://leetcode.com/problems/trapping-rain-water/
https://leetcode.com/problems/sliding-window-maximum/

A general greedy solution to process similar problems

class Solution {

public int videoStitching(int[][] clips, int time) {

Arrays.sort(clips, (a,b)->a[0]-b[0]);

int start = 0, end = 0, far_can_reach = 0, ans = 0;

while(end<time) {

ans++;

while(start<clips.length && clips[start][0]<=end) {

far_can_reach = Math.max(far_can_reach, clips[start][1]);

start++;

}

System.out.println(far_can_reach);

if(end==far_can_reach) return -1;

end = far_can_reach;

}

return ans;

}

}

Time complexity: O(n)
Space complexity: O(1)

Type 2: Find the overlapping intervals. The input is an array of intervals, which is a list of (start,
end) pairs. It usually asks to merge the overlapping intervals; to find the smallest interval set
that all intervals overlap with at least one of them;

The solution idea is the first sort the list either by the start or the end, Loop over the array, find
the array the start of which is later than the prior end.

class Solution:

def merge(self, intervals: List[List[int]]) -> List[List[int]]:

intervals.sort()

start, end = intervals[0]

ans = []

n = len(intervals)

for i in range(1, n):

if intervals[i][0]>end:

ans.append([start, end])

start, end = intervals[i]

else:

end = max(end, intervals[i][1])

https://leetcode.com/problems/minimum-number-of-taps-to-open-to-water-a-garden/solutions/506853/java-a-general-greedy-solution-to-process-similar-problems/

ans.append([start, end])

return ans

class Solution:

def findMinArrowShots(self, points: List[List[int]]) -> int:

points.sort(key=lambda x:(x[1], x[0]))

n = len(points)

ends = points[0][1]

ans = 0

for i in range(n):

if points[i][0] <= ends:

continue

ans += 1

ends = points[i][1]

ans += 1

return ans

Time complexity: O(n)
Space complexity: O(n)

Examples:
● LC 45. Jump Game II
● LC 406. Queue Reconstruction by Height
● LC 738. Monotone Increasing Digits
● LC 968. Binary Tree Cameras （子节点返回状态）

● LC 135. Candy (同时两边比较会顾此失彼，要两个循环分别比较左右)
● LC 1024. Video Stitching

6. Dynamic Programming
Window Sliding Technique

6.1. Toxonomization
Recall that there are two different techniques we can use to implement a dynamic programming
solution; memorization and tabulation.

● Memoization is where we add caching to a function (that has no side effects). In
dynamic programming, it is typically used on recursive functions for a top-down solution

https://leetcode.com/problems/jump-game-ii/
https://leetcode.com/problems/queue-reconstruction-by-height/
https://leetcode.com/problems/monotone-increasing-digits/
https://leetcode.com/problems/binary-tree-cameras/
https://leetcode.com/problems/candy/
https://leetcode.com/problems/video-stitching/
https://www.geeksforgeeks.org/window-sliding-technique/

that starts with the initial problem and then recursively calls itself to solve smaller
problems.

● Tabulation uses a table to keep track of subproblem results and works in a bottom-up
manner: solving the smallest subproblems before the large ones, in an iterative manner.
Often, people use the words "tabulation" and "dynamic programming" interchangeably.

In many programming languages, iteration is faster than recursion. Therefore, we often want to
convert a top-down memoization approach into a bottom-up dynamic programming one
(some people go directly to bottom-up, but most people find it easier to come up with a
recursive top-down approach first and then convert it; either way is fine).

背包问题

打家劫舍

股票问题

子序列问题

Solve steps:
● DP cell definition
● Deduction function
● DP initialization
● Loop order (outer/inner, forward/backward)
● Print DP

6.2. Knapsack Problem
m weights napsack, most value
0-1 KP: n types, each 1 item
Complete KP: n types, each inf items
Multi-KP: n types, each different numbers of items

6.3. 0-1 Knapsack Problem
Input:
weights list[n], values list[n], knapsack capacity m
All these values should be >= 0, you can only pick an item once, fix knapsack capacity

Two loop method:

dp = []

dp = [[0]*(m+1) for _ in range(n+1)]

for i in range(n): # The inner and outer loop are exchangeable, since the

order to update the values is from top left to bottom right

for j in range(m+1):

dp[i+1][j] = dp[i][j]

if j>=weights[i]: Otherwise, there’s out of bounds error

dp[i+1][j] = max(dp[i+1][j], dp[i][j-weights[i]]+values[i])

return dp[n][m]

One loop method:

dp = [0]*(m+1)

for i in range(n): # Can not switch inner and outer loop since the

definition of the dp is row based, otherwise overwritten.

for j in reversed(range(weights[i], m+1)): # this has to be in reverse

order since your update of value is based on previous row and you don’t

want to overwrite it when you do forward probing. Otherwise, an item can be

picked multiple times.

dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

return dp[m]

There are three variants:
● Fix knapsack capacity, get max value

○ Last Stone Weight II
○ dp[i+1][j] = max(dp[i][j], dp[i][j-weights[i]]+values[i])

● Fix knapsack capacity, get whether it’s possible to reach capacity
○ Partition Equal Subset Sum
○ dp[i+1][j] = dp[i][j] or dp[i][j-weights[i]]

● Fix knapsack capacity, get how many ways to fill in the knapsack
○ Target sum
○ dp[i+1][j] = dp[i][j] + dp[i][j-weights[i]]

6.4. Complete Knapsack Problem
Input:
weights list[n], values list[n], knapsack capacity m
All these values should be >= 0, you can pick an item for inf times, fix knapsack capacity

● Pure problem

Nested loop method:

dp = []

dp = [[0]*(m+1) for _ in range(n+1)]

for i in range(n): # The inner and outer loop are not exchangeable

for j in range(1, m+1):

dp[i+1][j] = dp[i][j]

if j>=weights[i]: Otherwise, there’s out of bounds error

https://leetcode.com/problems/last-stone-weight-ii/
https://leetcode.com/problems/partition-equal-subset-sum/
https://leetcode.com/problems/target-sum/

dp[i+1][j] = max(dp[i+1][j], dp[i+1][j-weights[i]]+values[i])

return dp[n][m]

1D array method:

dp = [0]*(m+1)

for i in range(n):

for j in range(weights[i], m+1): # this has to be in increasing order

dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

return dp[m]

There are three variants:
● get how many combinations

○ Coin Change II
○ Inner napsack, outer items, to ensure same item being inserted consecutively

● get how many combinations with order
○ Combination Sum IV
○ Inner items, outer napsack, same item can be inserted separately

● Fix knapsack capacity, get how many ways to fill in the knapsack
○ Target sum
○ dp[i+1][j] = dp[i][j] + dp[i+1][j-weights[i]]

6.5. Two Pointers
The two pointers technique is a common algorithmic approach that involves using two pointers
(or indices) to iterate through a data structure, often to find pairs or subarrays that meet certain
conditions. Unlike sliding windows, the two pointers technique doesn't necessarily maintain a
fixed window size but instead relies on the relative movement of the two pointers.

Template:

def two_pointers(arr):

left = 0

right = len(arr) - 1

while left < right:

Perform operations with arr[left] and arr[right]

Example condition to move pointers

if condition:

left += 1

else:

https://leetcode.com/problems/target-sum/

right -= 1

return result

Partition Array:

def partition(arr, pivot):

left, right = 0, len(arr) - 1

while left <= right:

while left <= right and arr[left] < pivot:

left += 1

while left <= right and arr[right] >= pivot:

right -= 1

if left < right:

arr[left], arr[right] = arr[right], arr[left]

left += 1

right -= 1

return left

Intersection of two sorted arrays:

def intersection_of_two_sorted_arrays(arr1, arr2):

i, j = 0, 0

intersection = []

while i < len(arr1) and j < len(arr2):

if arr1[i] == arr2[j]:

if not intersection or arr1[i] != intersection[-1]:

intersection.append(arr1[i])

i += 1

j += 1

elif arr1[i] < arr2[j]:

i += 1

else:

j += 1

return intersection

Examples:

● Two Sum (Sorted Array): Find two numbers such that they add up to a specific target.

● Remove Duplicates from Sorted Array: Remove duplicates in-place in a sorted array.
● Trapping Rain Water: Calculate the total water that can be trapped after raining.
● Container With Most Water: Find two lines that together with the x-axis form a container,

such that the container contains the most water.
● Valid Palindrome: Check if a given string is a palindrome considering only alphanumeric

characters and ignoring cases.
● Partition Array: Partition an array into two parts based on a pivot element.
● Find Intersection of Two Sorted Arrays: Find the intersection of two sorted arrays.

LC 15. 3Sum

6.6. Merge Interval
Another variant of two pointers is the merge intervals tasks. The "merge intervals" problem
involves merging overlapping intervals into a single interval.

Algorithm:
● Sort the Intervals: Start by sorting the intervals based on the starting point of each

interval. This helps in easily identifying overlapping intervals.
● Merge Overlapping Intervals: Iterate through the sorted intervals, and for each interval:

○ If the current interval overlaps with the previous one (i.e., the start of the current
interval is less than or equal to the end of the previous interval), merge them by
updating the end of the previous interval.

○ If it doesn't overlap, add the previous interval to the result list and move to the
next interval.

def merge_intervals(intervals):

if not intervals:

return []

Sort the intervals based on the starting time

intervals.sort(key=lambda x: x[0])

merged = [intervals[0]]

for current in intervals[1:]:

prev = merged[-1]

If the current interval overlaps with the merged interval, merge

them

if current[0] <= prev[1]:

https://leetcode.com/problems/3sum/?envType=study-plan-v2&envId=top-interview-150

prev[1] = max(prev[1], current[1])

else:

If it doesn't overlap, add the current interval to the merged

list

merged.append(current)

return merged

Time complexity: O(nlogn)
Space complexity: O(n)

To insert a new interval into the sorted intervals:

def insert(self, intervals: List[List[int]], newInterval: List[int]) ->

List[List[int]]:

n = len(intervals)

i = 0

res = []

Case 1: No overlapping before merging intervals

while i < n and intervals[i][1] < newInterval[0]:

res.append(intervals[i])

i += 1

Case 2: Overlapping and merging intervals

while i < n and newInterval[1] >= intervals[i][0]:

newInterval[0] = min(newInterval[0], intervals[i][0])

newInterval[1] = max(newInterval[1], intervals[i][1])

i += 1

res.append(newInterval)

Case 3: No overlapping after merging newInterval

while i < n:

res.append(intervals[i])

i += 1

return res

Examples:
LC 56. Merge Intervals
LC 57. Insert Interval

https://leetcode.com/problems/merge-intervals/
https://leetcode.com/problems/insert-interval/

6.7. Cycle/Intersection Detection
https://leetcode.com/problems/find-the-duplicate-number/editorial/
Floyd's Tortoise and Hare (Cycle Detection) Algorithm: consists of two phases and uses two
pointers, usually called tortoise (slow pointer) and hare (fast pointer).

General strategy:
1. (Phase 1) Initialize slow, fast pointers as starting point
2. Iterate end through the iterable objects,

a. fast pointer moves twice the speed of slow pointer
b. If fast pointer meets slow pointer

i. Mark this point as intersection point; break
ii. Slow travels (F+a), fast travels F+nC+a. Thus, 2(F+a)=F+nC+a

3. (Phase 2) Initialize slow as starting point, fast pointers as intersection point (F+a)
4. Iterate end through the iterable objects,

a. fast pointer moves the same speed of slow pointer
b. If fast pointer meets slow pointer

i. Mark this point as Entrance of Cycle; return
ii. Slow at F, fast at nC+F, which is F

low = fast = root

while True:

slow = slow.next

fast = fast.next.next

if slow == fast:

break

slow = root

while slow != fast:

slow = slow.next

fast = fast.next

return slow (or fast)

Examples:
LC 202. Happy Number

6.8. Sliding Window
Intuition: reduce the use of nested loops and replace it with a single loop, thereby reducing the
time complexity.

https://leetcode.com/problems/find-the-duplicate-number/editorial/
https://leetcode.com/problems/happy-number/

Sliding windows problems usually are able to be solved using fixed-size Deque structure which
allows you to drop the outdated elements from the front and drop insignificant elements from the
end. For monotonic deque, You want to ensure the deque window only has decreasing
(increasing) elements. That way, the leftmost element is always the largest (smallest).

Sliding window general strategy
5. Initialize start, answer, check_status values;
6. Iterate end through the iterable objects

a. Update check_status based on end
b. While check_status is invalid

i. Update check_status based start
ii. Shrink (increment start) window

c. Update answer based on start and end
7. Finalize and return answer

Example:
LC 3. Longest Substring Without Repeating Characters
LC 30. Substring with Concatenation of All Words
LC 76. Minimum Window Substring
LC 209. Minimum Size Subarray Sum
LC 239. Sliding Window Maximum (monotonic deque)

queue = []

max_collection = []

for i in range(len(nums)):

while len(queue) > 0 and queue[-1] < nums[i]:

queue.pop()

queue.append(nums[i])

if i+1 >= k:

max_collection.append(queue[0])

if queue[0] == nums[i+1-k]:

queue.pop(0)

return max_collection

Intuition: In any sliding window based problem we have two pointers. One right pointer whose
job is to expand the current window and then we have the left pointer whose job is to contract a
given window. At any point in time, only one of these pointers moves and the other remains
fixed.

https://leetcode.com/problems/longest-substring-without-repeating-characters/
https://leetcode.com/problems/substring-with-concatenation-of-all-words/
https://leetcode.com/problems/minimum-window-substring/
https://leetcode.com/problems/minimum-size-subarray-sum/
https://leetcode.com/problems/sliding-window-maximum/

The solution is pretty intuitive. We keep expanding the window by moving the right pointer.
When the window between left and right pointers meets all the desired requirements. we
contract (moving the left pointer) and save the optimal window.

Examples:
● Maximum Sum Subarray of Size K: Find the maximum sum of a subarray of size K.
● Longest Substring Without Repeating Characters: Find the length of the longest

substring without repeating characters.
● Minimum Window Substring: Find the minimum window in a string that contains all

characters of another string.
● Subarrays with Given Sum: Find the number of subarrays with a given sum.
● Longest Subarray with Sum at Most K: Find the length of the longest subarray with sum

at most K.
● Longest Subarray with Sum Exactly K: Find the length of the longest subarray with sum

exactly K.

LC 76. Minimum Window Substring (HashMap)

class Solution:

def minWindow(self, s: str, t: str) -> str:

if not t or not s:

return ""

dict_t = Counter(t)

char_counts = len(dict_t.keys())

ans = inf, None, None

l, r = 0, 0

formed = 0

window_counts = Counter()

while r < len(s):

ch_r = s[r]

window_counts[ch_r] += 1

if ch_r in dict_t and window_counts[ch_r] == dict_t[ch_r]:

formed += 1

while l<=r and formed == char_counts:

ch_l = s[l]

if r-l+1 < ans[0]:

https://leetcode.com/problems/minimum-window-substring/

ans = (r-l+1, l, r)

window_counts[ch_l] -= 1

if ch_l in dict_t and window_counts[ch_l] < dict_t[ch_l]:

formed -= 1

l += 1

r += 1

return "" if ans[0] == inf else s[ans[1]:ans[2]+1]

6.9. Finite State Machine
Create one dp to store each finite state's optimal cost at time i.
at each time state, update the result of each state from the result of time i-1, save them in dp.

class Solution {

public long[] minimumCosts(int[] state1_cost, int[] state2_cost, int

transfer_cost) {

int n = state1_cost.length;

int[] ans = new int[n];

int[] dp_state1 = new int[n+1];

int[] dp_state2 = new int[n+1];

dp_state1 = 0;

dp_state2 = expressCost;

for(int i=1;i<=n;i++) {

dp_state1[i] = Math.min(dp_state1[i-1]+state1_cost[i-1],

dp_state2[i-1]+state2_cost[i-1]);

dp_state2[i] =

Math.min(dp_state1[i-1]+state1_cost[i-1]+expressCost,

dp_state2[i-1]+state2_cost[i-1]);

ans[i-1] = Math.min(dp_state1[i], dp_state2[i]);

}

return ans;

}

}

6.10. Bit Mask
Bit mask is usually used to solve “minimum subset cover problem ”, which means to select a
minimum number of candidates that the join of them fulls all the the requirements.

What is bitmasking? Bitmasking is used to indicate the selection of subsets of all candidates.
For the bit part, every candidate is encoded as a single bit, so all states of potential selections
can be encoded as a group of bits, i.e. a binary number. For the mask part, we use 0/1 to
represent the binary state of selecting something. In most cases, 1 stands for the valid state
while 0 stands for the invalid state.

Usually for n candidates, all states are from “0” to “1<<n -1”, the initialization can be:

int[] dp = new int[1 << n];

Arrays.fill(dp, -1);

dp[0] = 0;

“Integer.bitCount(x)” counts the number of selected candidates at current state.
“(1 << n) - 1”, to get ending mask that all nodes are set to true
“(x >> i) & 1” to get i-th bit in state x.
“x | (1 << i);” to mark i-th candidate as selected in current state x.
“x ^ (1 << i)” tp flip the bit at position i
“x = target_x & ~baseline_x” The set target_x \ baseline_x denotes the set difference,
containing the target state but not in the baseline state.
“(x & (x - 1) == 0)”, Brian Kernighan's method to check if a mask x has only one bit set to 1. This
is because, in those cases, the mask is in the form of 100...000, and mask - 1 in binary is
0111...111. The AND of these two numbers will be 0 as there are no positions where both bits
are set to 1.

6.11. Game Theory
Game theory problems are usually in the setting that player A and B take turns to do some
action inorder to maximize their scores.They can be solved using dynamic programming (DP) or
memoization to optimize recursive solutions. The key idea is to simulate all possible moves and
use the results of subproblems to find the optimal strategy.

The big idea is,
● We keep the record of the maximum score of current situation
● For any choice of current player, if we select any of it, we need to maximize current gain

but minimize the remainning gain which is the score of the next player. Basically, use
current option score - next remainning score.

We take LC 486. Predict the Winner as an example:

Top-down solution:

def predictTheWinner(self, nums: List[int]) -> bool:

https://leetcode.com/problems/predict-the-winner/

@cache

def dp(left, right):

if left == right:

return nums[left]

return max(nums[left] - dp(left + 1, right), nums[right] - dp(left,

right - 1))

return dp(0, len(nums)-1)>=0

Top-down solution with player identifier:

def predictTheWinner(self, nums: List[int]) -> bool:

@cache

def dp(flag, left, right):

if left > right:

return 0

if flag > 0:

return max(nums[left] + dp(-flag, left+1, right), nums[right] +

dp(-flag, left, right-1))

else:

return min(-nums[left] + dp(-flag, left+1, right), -nums[right]

+ dp(-flag, left, right-1))

return dp(1, 0, len(nums)-1)>=0

Bottom-up solution:

We fill the diagonal first and than trying to fill the next diagonal

towards the top right.

def predictTheWinner(self, nums: List[int]) -> bool:

n = len(nums)

dp = [[0] * n for _ in range(n)]

for i in range(n):

dp[i][i] = nums[i]

for diff in range(1, n):

for left in range(n - diff):

right = left + diff

dp[left][right] = max(nums[left] - dp[left + 1][right],

nums[right] - dp[left][right - 1])

return dp[0][n - 1] >= 0

Time complexity: O(n^2)
Space complexity: O(n^2)

The Game theory questions
LC 486. Predict the Winner
LC 877 Stone Game
LC 1908. Game of Nim

6.12. Simulation
https://leetcode.com/problems/champagne-tower/editorial/

7. Tree
7.1. Resources

Introduction to Trie
Backtracking Algorithms

7.2. Binary Tree Traversal
Level Order transversal: Use BFS style of probing, we need a queue to save the nodes in each
level.

def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:

q = [root]

ans = []

while q:

layer = []

size = len(q)

for _ in range(size):

cur = q.pop(0)

if not cur:

continue

layer.append(cur.val)

q.append(cur.left)

q.append(cur.right)

if layer:

ans.append(layer)

return ans

https://leetcode.com/problems/predict-the-winner/
https://leetcode.com/problems/stone-game/
https://leetcode.com/problems/game-of-nim/
https://leetcode.com/problems/champagne-tower/editorial/
https://leetcode.com/explore/learn/card/trie/150/introduction-to-trie/
https://www.geeksforgeeks.org/backtracking-algorithms/

Recursive tranversal:
Here we give an example of inorder tranversal, for preorder and postorder, you need to swap
the order of those lines of code.

def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:

ans = []

def dfs(node):

if not node:

return

dfs(node.left)

ans.append(node.val)

dfs(node.right)

dfs(root)

return ans

Iterative tranversal of a tree need the assist of stack.
● Preorder: stack initialized with root, push order (mid, right, left), pop and add value

before children push
● Postorder: stack initialized with root, push order (mid, left, right), pop and add value

before children push, reverse the order of final answer
● Inorder: stack initialized with empty, use a cur pointer point to root

Preorder tranversal:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:

stack = [root]

ans = []

while stack:

cur = stack.pop()

if cur:

ans.append(cur.val)

else:

continue

stack.append(cur.right)

stack.append(cur.left)

return ans

Postorder tranversal:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:

stack = [root]

ans = []

while stack:

cur = stack.pop()

if cur:

ans.append(cur.val)

else:

continue

stack.append(cur.left)

stack.append(cur.right)

return ans[::-1]

Inorder tranversal:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:

stack = []

ans = []

cur = root

while cur or stack:

while cur:

stack.append(cur)

cur = cur.left

cur = stack.pop()

ans.append(cur.val)

cur = cur.right

return ans

Examples:
LC 98. Validate Binary Search Tree

7.3. Binary Tree Construction
You’re given two traversals of the same BT, and you’re asked to reconstruct the tree.
The key point is, based on the order property of the traversals, locate the root node, split
traversals into chunks and recursively construct subtree.

Approach:
1. Use either the preorder or postorder trasversal as an anchor list. (easy finding root)
2. Use the other traversal as a reference list, a map of value to index should be learnt
3. In the recursive loop:

a. If left index is greater than the right index for the reference list, exit
b. Construct the root from the anchor list
c. Locate the position of root in the reference list
d. Split the reference list

https://leetcode.com/problems/validate-binary-search-tree/

e. Split the anchor list (because of the length equality)
f. Recursively process the matched substring

Here’s an example or building a tree from inorder and postorder traversal

def buildTree(inorder: List[int], postorder: List[int]) ->

Optional[TreeNode]:

postIndex = len(postorder)-1

inorder_map = {}

for i, val in enumerate(inorder):

inorder_map[val] = i

def dfs(in_left, in_right):

if in_left>in_right:

return None

nonlocal postIndex

rootval = postorder[postIndex]

root = TreeNode(rootval)

postIndex -= 1

index = inorder_map[rootval]

root.right = dfs(index+1, in_right)

root.left = dfs(in_left, index-1)

return root

return dfs(0, len(inorder)-1)

Examples:
LC 105. Construct Binary Tree from Preorder and Inorder Traversal
LC 106. Construct Binary Tree from Inorder and Postorder Traversal
LC 889. Construct Binary Tree from Preorder and Postorder Traversal

7.4. Binary Search Tree
Key points:

● Inorder traversal of BST is an array sorted in the ascending order. (According to this rule,
we can easily construct an inorder transversal of BST. If you’re given another traversal,
either preorder or postorder, you can use the two traversals together to construct a BST.)

● The left subtree are all smaller than root, the right subtree are all greater than root. This
can be used to simplify transversal

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/
https://leetcode.com/problems/construct-binary-tree-from-preorder-and-postorder-traversal/

● The right most node of the left subtree is the node that’s smaller than and closest to root,
the left most node of the right subtree is the node that’s greater than and closest to root.

Recursive Search:

def searchBST(self, root: Optional[TreeNode], val: int) ->

Optional[TreeNode]:

if not root:

return None

if val == root.val:

return root

elif val>root.val:

return self.searchBST(root.right, val)

else:

return self.searchBST(root.left, val)

Iterative Search:

def searchBST(self, root: Optional[TreeNode], val: int) ->

Optional[TreeNode]:

while root:

if val>root.val:

root = root.right

elif val<root.val:

root = root.left

elif val==root.val:

return root

else:

return None

Insert:

def insertIntoBST(self, root: Optional[TreeNode], val: int) ->

Optional[TreeNode]:

if root is None:

return TreeNode(val)

if val>root.val:

root.right = self.insertIntoBST(root.right, val)

elif val<root.val:

root.left = self.insertIntoBST(root.left, val)

return root

Delete:

def deleteNode(self, root: Optional[TreeNode], key: int) ->

Optional[TreeNode]:

if root is None:

return root

if root.val == key:

if root.right:

node = root.right

while node.left:

node = node.left

node.left = root.left

return root.right

elif root.left:

return root.left

else:

return None

elif root.val < key:

root.right = self.deleteNode(root.right, key)

else:

root.left = self.deleteNode(root.left, key)

return root

Binary search tree heavily dependent on inorder transversal, for example, check if a binary tree
is a valid binary search tree.

Recursive method

def isValidBST(self, root: TreeNode) -> bool:

def inorder(root):

if not root:

return True

if not inorder(root.left):

return False

if root.val <= self.prev:

return False

self.prev = root.val

return inorder(root.right)

self.prev = -math.inf

return inorder(root)

Iterative method

def isValidBST(self, root: Optional[TreeNode]) -> bool:

stack, prev = [], -inf

while stack or root:

while root:

stack.append(root)

root = root.left

root = stack.pop()

if root.val <= prev:

return False

prev = root.val

root = root.right

return True

Examples:
LC 1008. Construct Binary Search Tree from Preorder Traversal

7.5. Trie
Trie is used to solve the prefix problems, which is to build a dictionary of the tree structures to
store all target words. It makes finding words sharing the same prefix faster.

1. Nary tree structure, where each Trie node represents a string (a prefix), children nodes
represent different successive characters.

2. Prefix tree, the root node is associated with the empty string, and all the descendants of
a node have a common prefix of the string associated with that node.

3. The corresponding relationship between characters and children nodes can be
represented using an array (fast, easy access, waste of space) or map (flexible, save
space)

4. TreeNode consists of, (value), children TreeNodes, and an end-word flag.
5. Basic operations of TreeNode, constructor, contains-key, get, put, set-end, is-end.
6. Basic operations of Trie constructor (empty TreeNode), insert, search
7. In questions, firstly, define TreeNode, then construct Trie, and lastly search in batches.

Array representation:

class TrieNode {

https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/

// change this value to adapt to different cases

public static final N = 26;

public TrieNode[] children = new TrieNode[N];

// you might need some extra values according to different cases

};

/** Usage:

* Initialization: TrieNode root = new TrieNode();

* Return a specific child node with char c: root.children[c - 'a']

*/

Map representation:

class TrieNode {

public Map<Character, TrieNode> children = new HashMap<>();

// you might need some extra values according to different cases

};

/** Usage:

* Initialization: TrieNode root = new TrieNode();

* Return a specific child node with char c: root.children.get(c)

*/

Implement a Trie:

class TrieNode{

private TrieNode[] links;

private final int R = 26;

private boolean isEnd;

public TrieNode() {

links = new TrieNode[R];

}

public boolean containsKey(char ch) {

return links[ch -'a'] != null;

}

public TrieNode get(char ch) {

return links[ch -'a'];

}

public void put(char ch, TrieNode node) {

links[ch -'a'] = node;

}

public void setEnd() {

isEnd = true;

}

public boolean isEnd() {

return isEnd;

}

}

class Trie {

private TrieNode root;

public Trie() {

root = new TrieNode();

}

public void insert(String word) {

TrieNode node = root;

for (int i = 0; i < word.length(); i++) {

char currentChar = word.charAt(i);

if (!node.containsKey(currentChar)) {

node.put(currentChar, new TrieNode());

}

node = node.get(currentChar);

}

node.setEnd();

}

public boolean search(String word) {

TrieNode node = root;

for (int i = 0; i < word.length(); i++) {

char curLetter = word.charAt(i);

if (node.containsKey(curLetter)) {

node = node.get(curLetter);

} else {

return false;

}

}

return node.isEnd();

}

public boolean startsWith(String prefix) {

Time Complexity: O(m)

Space Complexity: O(1)

TrieNode node = root;

for (int i = 0; i < prefix.length(); i++) {

char curLetter = prefix.charAt(i);

if (node.containsKey(curLetter)) {

node = node.get(curLetter);

} else {

return false;

}

}

return true;

}

}

class Trie:

def __init__(self):

self.N = 26

self.root = TrieNode(self.N)

def insert(self, word: str) -> None:

node = self.root

for ch in word:

idx = ord(ch) - ord('a')

if not node.field[idx]:

node.field[idx] = TrieNode(self.N)

node = node.field[idx]

node.isEnd = True

def search(self, word: str) -> bool:

node = self.root

for ch in word:

idx = ord(ch) - ord('a')

if node.field[idx]:

node = node.field[idx]

else:

return False

return node.isEnd

def startsWith(self, prefix: str) -> bool:

node = self.root

for ch in prefix:

idx = ord(ch) - ord('a')

if node.field[idx]:

node = node.field[idx]

else:

return False

return True

Time Complexity: O(M*N*K), M words, N length, K characters
Space Complexity: O(M*N*K), M words, N length, K characters

Simplest Trie implementation is a simple dictionary.

trie = {}

for i, word in enumerate(words):

node = trie

for ch in word:

if ch not in node:

node[ch] = {}

node = node[ch]

node['$'] = i

Example questions:
LC 208. Implement Trie (Prefix Tree)
LC 212. Word Search II
LC 425. Word Squares

7.6. DFS
For a tree, we have the following traversal methods using DFS:

● Preorder: visit each node before its children.
● Postorder: visit each node after its children.
● Inorder (for binary trees only): visit left subtree, node, right subtree.

There are generally two methods: recursive and iterative:
Recursive pseudo code (preorder):
procedure preorder(treeNode v)
{

visit(v);
for each child u of v

preorder(u);
}
The iterative DFS is similar to the iterative BFS but differs from it in following ways:

● It uses a stack instead of a queue.
● The DFS should mark discovered only after popping the vertex, not before pushing it.
● It uses a reverse iterator instead to produce the same results as recursive DFS.

https://leetcode.com/problems/implement-trie-prefix-tree/description/
https://leetcode.com/problems/word-search-ii/description/
https://leetcode.com/problems/word-squares/

Iterative pseudo code (preorder):
procedure preorder(treeNode v)
{

Stack node_stack;
node_stack.offer(v)
while node_stack:

v = node_stack.pop()
visit(v);
for each child u of v

node_stack.push(u);
}

Recursive rooted tree java code (postorder):

class Solution {

public List<Integer> postorder(Node root) {

List<Integer> ans = new ArrayList<>();

if (root == null)

return ans;

dfs(root, ans);

return ans;

}

public void dfs(Node root, List<Integer> ans) {

if(root==null)

return;

for(Node child : root.children) {

dfs(child, ans);

}

ans.add(root.val);

}

}

Iterative rooted-tree java code (postorder):

class Solution {

public List<Integer> postorder(Node root) {

LinkedList<Node> stack = new LinkedList<>();

LinkedList<Integer> ans = new LinkedList<>();

if (root == null) {

return ans;

}

stack.add(root);

while (!stack.isEmpty()) {

Node node = stack.pollLast();

ans.addFirst(node.val);

for (Node item : node.children) {

if (item != null) {

stack.add(item);

}

}

}

return ans;

}

}

If the tree is non-rooted, then instead of children list of each node, we’re provided with the
neighbors of each node. We can start from any random node and consider it as the root, the
children of nodes are the neighbors excluding the parent of the node.

Recursive non-rooted tree java code (postorder):
Input: graph (adjacency list)
Procedure: post_order_dfs(0, -1);

public void post_order_dfs(int node, int parent) {

for(int neiborgh : graph.get(node)) {

// neiborghs that is not the parent node are children of non-rooted

tree

if(neiborgh!=parent) {

post_order_dfs(neiborgh, node);

visit(node);

}

}

}

Recursive non-rooted tree DFS java code (postorder):

class Solution:
def minTime(self, n: int, edges: List[List[int]], hasApple: List[bool]) -> int:

adj = [[] for i in range(n)]
for edge in edges:

adj[edge[0]].append(edge[1])
adj[edge[1]].append(edge[0])

return self.dfs(0, -1, adj, hasApple)

def dfs(self, node, parent, adj, hasApple):
totalTime = 0
childTime = 0
for child in adj[node]:

if child==parent:
continue

childTime = self.dfs(child, node, adj, hasApple)
if childTime>0 or hasApple[child]:

totalTime += childTime + 2
return totalTime

7.7. BackTrack
回溯总是和递归结合在一起，形成一个n叉树，本质是嵌套for循环
常见回溯能解决的问题类型有：

● 组合问题

● 切割问题

● 子集问题

● 子序列问题

● 排列问题

● 棋盘问题

三步走：

确定参数和返回值，确定终止条件，单层递归逻辑

关于返回值，搜索所有可行解，用void，搜索单个可行解，用bool
组合template

def backtrack(start, end, cur_solution, cur_stat, termination_rule):

If termination_rule:

collect solution

return

for node in (start, end):

process node to cur_solution

cur_stat += node

bracktrack(start+1, end, cur_solution, cur_stat, termination_rule)

cur_stat -= node

remove node from cur_solution

组合和无放回排列的区别在于，排列要循环所有不在当前solution内的元素，无放回组合要从当

前元素的下一个元素开始循环。

剪枝操作有两个：

1. 循环的结束条件，如果树的深度已经不足以得到可行解，则在循环边界剪枝

2. 当前解的值，如果已经超出目标值的范围，则在终止条件前剪枝

3. 去重，只选择重复值中的最后一个，

if i>start and candidates[i]==candidates[i-1]: continue
也可以用layer wised 的 used数组来去重

Note:
● 每一步在同一个集合中取选项，使用startIndex，在不同集合中取选项，使用index
● 有放回和无放回的区别在于，无放回遍历从当前元素开始，有放回只遍历当前之后元素。

● 树层去重，只选择重复值中的最后一个， if i>start and candidates[i]==candidates[i-1]:
continue

分割问题template

def partition(self, s: str) -> List[List[str]]:

def check_切割条件(s):

for i in range(len(s)//2):

if …:

return False

return True

def backtrack(start, sol):

if start == len(s):

ans.append(sol[:])

return

cur = []

for i in range(start, len(s)):

cur.append(s[i])

if check_切割条件(cur):

sol.append("".join(cur))

backtrack(i+1, sol)

sol.pop()

return

ans = []

backtrack(0, [])

return ans

startIndex 告诉我们下一层切割的起始位置，用于判断是在当前切割中增加元素，还是重新开启

一个新的切割。

子集问题：

返回list of list，三层嵌套

和组合问题的区别：子集问题，每个节点都有需要的结果，所以每个节点都要收集结果，每层递归

都要收集结果，而非只在叶子节点取结果。

子集template:

def subsets(self, nums: List[int]) -> List[List[int]]:

def backtrack(start, cur):

ans.append(cur[:])

for i in range(start, len(nums)):

cur.append(nums[i])

backtrack(i+1, cur)

cur.pop()

return

ans = []

backtrack(0, [])

return ans

子序列问题template：
● 每个元素只有取或不取两种情况，在节点收集结果而非叶子

● 在每一层上定义一个set，use this set to remove duplicates

def findSubsequences(self, nums: List[int]) -> List[List[int]]:

def backtrack(start, cur):

if len(cur)>=2:

ans.append(cur[:])

used = set()

for i in range(start, len(nums)):

if (nums[i] in used) or (len(cur)>0 and nums[i]<cur[-1]):

continue

used.add(nums[i])

cur.append(nums[i])

backtrack(i+1, cur)

cur.pop()

one used set for every layer, do not backtrack it

ans = []

backtrack(0, [])

return ans

排列问题template：
● 循环中每一层元素，不是从startindex开始取，而是对于所有选项，选择还未在当前解中选

择的去取，也就是树枝去重，需要用一个可回溯的set(全局变量)检测，维持所有保存在当

前解中的元素

● 只在叶子结点收集结果

● 也可以用Answer set来去重

def permute(self, nums: List[int]) -> List[List[int]]:

used = [False]*len(nums)

def backtrack(cur):

if len(cur)==len(nums):

ans.append(cur[:])

for i in range(len(nums)):

if used[i]:

continue

cur.append(nums[i])

used.add(i)

backtrack(cur)

used.remove(i)

cur.pop()

return

ans = []

backtrack([])

return ans

Examples:
LC 51. N-Queens
LC 52. N-Queens II
LC 37. Sudoku Solver
LC 79. Word Search

Backtrack is a special case in DFS, by terminating a failed path and switching to other possible
searching paths. It’s trying to build a solution incrementally, one piece at a time, removing those
solutions that fail to satisfy the constraints of the problem at any point of time.

It can be used to solve the following questions:
● Decision Problem – In this, we search for a feasible solution.
● Optimization Problem – In this, we search for the best solution.
● Enumeration Problem – In this, we find all feasible solutions.

The function can be broken down into the following four steps:
● Step 1). Check if we reach the bottom case of the recursion (EXIT THE RECURSION).
● Step 2). Check if the current state is invalid, out of boundary, do not match searching

target requirement.
● Step 3). If the current step is valid, mark the current state as visited, or change the state

to target.
● Step 4). Start the exploration of backtracking with the strategy of DFS. Iterate through all

the children in the next level. If True, break the loop.
● Step 5). At the end of the exploration, revert the state back to its original state.

https://leetcode.com/problems/n-queens/
https://leetcode.com/problems/n-queens-ii/
https://leetcode.com/problems/sudoku-solver/
https://leetcode.com/problems/word-search/solutions/491025/word-search/

● Step 6). Return the result of the exploration.

class Solution {

private char[][] board;

private int ROWS;

private int COLS;

public boolean exist(char[][] board, String word) {

this.board = board;

this.ROWS = board.length;

this.COLS = board[0].length;

for (int row = 0; row < this.ROWS; ++row)

for (int col = 0; col < this.COLS; ++col)

if (this.backtrack(row, col, word, 0))

return true;

return false;

}

protected boolean backtrack(int row, int col, String word, int index) {

if (index >= word.length())

return true;

if (row < 0 || row == this.ROWS || col < 0 || col == this.COLS

|| this.board[row][col] != word.charAt(index))

return false;

boolean ret = false;

// mark the path before the next exploration

this.board[row][col] = '#';

int[] rowOffsets = {0, 1, 0, -1};

int[] colOffsets = {1, 0, -1, 0};

for (int d = 0; d < 4; ++d) {

ret = this.backtrack(row + rowOffsets[d], col + colOffsets[d], word,

index + 1);

if (ret)

break;

}

this.board[row][col] = word.charAt(index);

return ret;

}

}

7.8. DFS Memorization
Memorization is used to look up the calculated result in constant time by storing the
subprblem’s results and avoid recalculating repeated subproblems.

This recursive approach will have repeated subproblems; this can be observed in the figure
below. Notice, the subtree with root 2 is repeated signifying that we must solve this
subproblem more than once.
To address this issue, the first time we calculate maxProfit for a certain position, we will store the
value in an array; this value represents the maximum profit we can get from the jobs at indices
from position to the end of the array. The next time we need to calculate maxProfit for this
position, we can look up the result in constant time.

class Solution {

// maximum number of memories are 50000

int[] memo = new int[50001];

// jobs: a list of items for searching and scheduling, this is a

varying sized list

// n: the termination flag indicating the end of all jobs

// position: the position indicator of which level of the tree the

current searching is at

private int findMaxProfit(List<List<Integer>> jobs, int n, int

position) {

// terminate because of reaching the end of search list

if (position == n) {

return 0;

}

// return result directly if it is calculated

if (memo[position] != -1) {

return memo[position];

}

// nextIndex is the index of next non-conflicting job

int nextIndex = findNextJob(jobs);

// find the maximum profit of our two options: skipping or

scheduling the current job

int maxProfit = Math.max(findMaxProfit(jobs, n, position + 1),

jobs.get(position).get(2) + findMaxProfit(jobs, n,

nextIndex));

// return maximum profit and also store it for future reference

(memoization)

return memo[position] = maxProfit;

}

public int jobScheduling(int[] startTime, int[] endTime, int[] profit)

{

// marking all values to -1 so that we can differentiate if we

have already calculated the answer or not

Arrays.fill(memo, -1);

List<List<Integer>> jobs = new ArrayList<>();

jobs = createJobs(startTime, endTime);

int n = startTime.length;

return findMaxProfit(jobs, n, 0);

}

}

One issue with the previous method is the recursive calls incurred stack space. This can be
avoided by applying the same approach in an iterative manner starting from the base case (in
reverse logical order) which is generally faster than the top-down recursive approach.

class Solution {

// maximum number of jobs are 50000

int memo[] = new int[50001];

private int findMaxProfit(List<List<Integer>> jobs, int[] startTime) {

int length = startTime.length;

for (int position = length - 1; position >= 0; position--) {

// it is the profit made by scheduling the current job

int currProfit = 0;

// nextIndex is the index of next non-conflicting job

int nextIndex = findNextJob(startTime,

jobs.get(position).get(1));

// Fetch the recursive next result, if there is the next job is

not out of bound add it's profit else just consider the current job profit

if (nextIndex != length) {

currProfit = jobs.get(position).get(2) + memo[nextIndex];

} else {

currProfit = jobs.get(position).get(2);

}

// terminate case and storing the maximum profit we can achieve

by scheduling jobs from index position to the end of array

if (position == length - 1) {

memo[position] = currProfit;

} else {

memo[position] = Math.max(currProfit, memo[position + 1]);

}

}

return memo[0];

}

public int jobScheduling(int[] startTime, int[] endTime, int[] profit)

{

List<List<Integer>> jobs = new ArrayList<>();

jobs = createJobs(startTime, endTime);

// no need to reinitialize the memo with -1

return findMaxProfit(jobs, startTime);

}

}

Example problems:
LC 1235. Maximum Profit in Job Scheduling
LC 95. Unique Binary Search Trees II

7.9. BFS
7.10. BFS Memorization
7.11. Binary Indexed Tree
7.12. Segment Tree

Segment Tree Data Structure - Min Max Queries - Java source code
Segment Tree Range Minimum Query
Lazy Propagation Segment Tree
A segment tree is a binary tree used for storing intervals or segments. It allows querying which
of the stored segments contain a given point and is efficient for answering range queries and
updates. Segment trees are particularly useful for problems where you need to perform multiple
range queries and updates on an array.

Basic Segment Tree Operations
● Build: Construct the segment tree from a given array. O(n)
● Query: Query a range to get information (e.g., sum, minimum, maximum, sum). O(log n)
● Update: Update an element or a range of elements. O(log n)

Keynotes:
● Segment Tree is a data structure that facilitates fast range queries, such as finding the

minimum, maximum, or sum across a range of numbers.

https://leetcode.com/problems/maximum-profit-in-job-scheduling/solutions/1358899/maximum-profit-in-job-scheduling/
https://leetcode.com/problems/unique-binary-search-trees-ii/
https://www.youtube.com/watch?v=xztU7lmDLv8
https://www.youtube.com/watch?v=ZBHKZF5w4YU
https://www.youtube.com/watch?v=xuoQdt5pHj0

● It is constructed by computing the desired operation (e.g., max) between sequential pairs
of elements, and repeating the process at higher levels until the entire range is covered.

● The implementation uses an additional array twice the size of the input array, where the
bottom half stores the input elements, and the top half stores the computed values at
different levels.

● Querying the max/min value in a given range involves walking up the tree, checking only
the necessary nodes that cover the range.

● The time complexity for construction and queries is O(n) and O(log n), respectively,
where n is the size of the input array.

For example, you spent one year counting the customer flow if the entire street. Now if you want
to know the accumulated number of customers in a time range for example from Jan to March,
you may use segment tree and only collect the data that’s related.

If you have the numbers simply stored in an array, you want to achieve a max range query.
● A naive solution: Iterate over every element in the array in the desired range. Query time

O(n)
● A speed-up solution: Create a two dimensional lookup table and pre-compute the max

between every possible date range looking up a value, Construct time O(n^2), Space
O(n^2), query time O(1)

● Segment Tree solution: Construct time & Space O(n), query time O(log(n))

Query given query range R and node range r:
● If R completely overlaps r: return precomputed value of r
● If R partially overlaps r: propagate the children of r
● If R does not overlap r: return the counterpart of r (max query return a minimum value,

min query return a maximum value, sum query return a 0)

Code template for range sum:
● Note that, for every normal range, the left should be divisible by 2, the right should not

be divisible by 2.

class SegmentTree:

def __init__(self, nums: List[int]):

self.n = len(nums)

self.tree = [None] * (self.n * 2)

for i in range(self.n):

self.tree[i+self.n] = nums[i]

for i in range(self.n-1, 0, -1):

self.tree[i] = self.tree[i * 2] + self.tree[i * 2 + 1]

def update(self, index: int, val: int) -> None:

pos = index + self.n

self.tree[pos] = val

while pos > 1:

left = pos

right = pos

if pos % 2 == 0:

right = pos + 1

else:

left = pos - 1

self.tree[pos // 2] = self.tree[left] + self.tree[right]

pos //= 2

def sumRange(self, left: int, right: int) -> int:

left += self.n

right += self.n

ans = 0

while left <= right:

if left % 2 == 1:

ans += self.tree[left]

left += 1

if right % 2 == 0:

ans += self.tree[right]

right -= 1

left //= 2

right //= 2

return ans

Lazy propagation:
This is an optimization technique on segment tree when there are a lot of updates, it miminize
the number of nodes to be updated.

Without lazy propagation, we go all the way towards the leaf nodes.
When lazy propagation is in place, we need to keep a lazy tree (a copy of segment tree with
default values) which stores the unapplied operations.

Whenever we reached a node in update or query, we need to check whether the past updates
are applied (if the value in the lazy tree is default value). If there’s a copmlete overlap, we
update the intermediate node, store the updates in its child nodes in the lazy tree, and return the
updated value. (we don’t propagate to the leaves.)

class SegmentTree:

def __init__(self, nums: List[int]):

self.n = len(nums)

self.tree = [0] * (2 * self.n)

self.lazy = [0] * (2 * self.n)

self._build(nums)

def _build(self, nums: List[int]):

for i in range(self.n):

self.tree[self.n + i] = nums[i]

for i in range(self.n - 1, 0, -1):

self.tree[i] = self.tree[2 * i] + self.tree[2 * i + 1]

def _apply(self, pos: int, val: int, length: int):

updates the node and marks it for lazy propagation.

self.tree[pos] += val * length

if pos < self.n:

self.lazy[pos] += val

def _push(self, pos: int):

ensures that updates are propagated down the tree before any

query or further updates.

for s in range(self.n.bit_length(), 0, -1):

i = pos >> s

if self.lazy[i] != 0:

self._apply(i * 2, self.lazy[i], (i * 2 + 1) - i * 2)

self._apply(i * 2 + 1, self.lazy[i], (i * 2 + 2) - (i * 2 +

1))

self.lazy[i] = 0

def updateRange(self, left: int, right: int, val: int):

left += self.n

right += self.n

l0, r0 = left, right

length = 1

while left <= right:

if left % 2 == 1:

self._apply(left, val, length)

left += 1

if right % 2 == 0:

self._apply(right, val, length)

right -= 1

left //= 2

right //= 2

length *= 2

self._push(l0)

self._push(r0)

def sumRange(self, left: int, right: int) -> int:

left += self.n

right += self.n

self._push(left)

self._push(right)

ans = 0

while left <= right:

if left % 2 == 1:

ans += self.tree[left]

left += 1

if right % 2 == 0:

ans += self.tree[right]

right -= 1

left //= 2

right //= 2

return ans

Examples:
LC 307. Range Sum Query - Mutable

7.13. Combination
Backtracking can be used to find all the combinations of a list of elements. For example, given a
list nums of n elements, we want to find all the combinations of k of them. The backtrack
function usually takes 4 inputs: start (the current location of the pointer on the list), temp_list (the
current collection of selected elements), nums (the list of all elements to choose from), k (the
ending criteria indicates for example the total number of elements should be selected).
Note:

● The difference from permutation is, the loop starts from starts which means all the seen
elements are not considered again to ensure no ordering issue.

● k may mean the remaining number of elements so every time to call backtrack we
deduct k by 1

def find_combinations(nums, k):

result = []

https://leetcode.com/problems/range-sum-query-mutable/

def backtrack_combinations(temp_list, nums, start, k):

Base case: if the combination is of length k, add it to the

result

if len(temp_list) == k:

result.append(temp_list[:])

return

Prune the cases if the remaining elements to choose from is not

enough for completing k

if n-start+1 < (k-len(temp_list)):

return

for i in range(start, len(nums)):

Include nums[i] in the current combination

temp_list.append(nums[i])

Recur with the next element and incremented combination

length

backtrack_combinations(temp_list, nums, i + 1, k)

Backtrack: remove the last element to try another combination

temp_list.pop()

backtrack_combinations([], nums, 0, k)

return result

Time Complexity: O(C(n, k) * k)
Space Complexity: O(C(n, k) * k)

7.14. Permutation
To generate all possible permutations of k elements from a list of n elements, we can use
backtracking. This problem is a variation of the combination problem but involves ordering the
elements within each subset, making it a permutation problem. The backtrack function takes 3
inputs, temp_list (the current collection of selected elements), nums (the list of all elements to
choose from), k (the ending criteria indicates for example the total number of elements should
be selected).

Note:
● The difference from combination is, the loop starts always from the beginning which

means we allow first seen elements to appear later.
● We need to keep a used set to make sure the used elements not using again.

def find_k_permutations(nums, k):

result = []

used = [False] * len(nums) # To track used elements

def backtrack_permutations(temp_list, nums, k):

Base case: if the permutation is of length k, add it to the

result

if len(temp_list) == k:

result.append(temp_list[:])

return

for i in range(len(nums)):

if used[i]:

continue

Include nums[i] in the current permutation

temp_list.append(nums[i])

used[i] = True

Recur with the next element

backtrack_permutations(temp_list, nums, k)

Backtrack: remove the last element and mark it as unused

temp_list.pop()

used[i] = False

backtrack_permutations([], nums, k)

return result

Time Complexity: O(A(n, k) * k)
Space Complexity: O(A(n, k) * k)

8. Graph
8.1. Resources

8.2. Graph Representations

Edges representation:

edges = []

for row in range(n):

for col in range(row+1, n):

if connected[row][col] == 1:

edges.append([row, col])

Construct graph from edges

graph = defaultdict(list)

for (u,v) in edges:

graph[u].append(v)

8.3. Connected Components
Method1: DFS algorithm with visited

Idea: To run DFS starting from a particular vertex, it will continue to visit the vertices depth-wise
until there are no more adjacent vertices left to visit. Each time we finish exploring a connected
component, we can find another vertex that has not been visited yet, and start a new DFS from
there. The number of times we start a new DFS will be the number of connected components.

Keynotes:
● Visited flag should be marked at the beginning of each DFS as an exit rule
● Check visited flag before go into any subtree DFS

Algorithm:
● Step 1). Create an adjacency list such that adj[v] contains all the adjacent vertices of

vertex v. Initialize a hashmap or array, visited, to track the visited vertices.
● Step 2). Define a counter variable and initialize it to zero.
● Step 3). Iterate over each vertex in edges, and if the vertex is not already visited, start a

DFS from it. Add every vertex visited during the DFS to visited.
● Step 4). Every time a new DFS starts, increment the counter variable by one.
● Step 5). At the end, the counter variable will contain the number of connected

components in the undirected graph.

class Solution {

private void dfs(List<Integer>[] adjList, int[] visited, int

startNode) {

visited[startNode] = 1;

for (int i = 0; i < adjList[startNode].size(); i++) {

if (visited[adjList[startNode].get(i)] == 0) {

dfs(adjList, visited, adjList[startNode].get(i));

}

}

}

public int countComponents(int n, int[][] edges) {

int components = 0;

int[] visited = new int[n];

List<Integer>[] adjList = new ArrayList[n];

for (int i = 0; i < n; i++) {

adjList[i] = new ArrayList<Integer>();

}

for (int i = 0; i < edges.length; i++) {

adjList[edges[i][0]].add(edges[i][1]);

adjList[edges[i][1]].add(edges[i][0]);

}

for (int i = 0; i < n; i++) {

if (visited[i] == 0) {

components++;

dfs(adjList, visited, i);

}

}

return components;

}

}

Time complexity O(E+V), space complexity O(E+V)

Method2: Union and find

Examples:
Number of Connected Components in an Undirected Graph

https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/solutions/1136824/number-of-connected-components-in-an-undirected-graph/

8.4. Union Find
Union-Find Algorithm can be used

1. Check whether an undirected graph contains a cycle or not
2. Group connected components in undirected graph

Note that the input to union find algorithm to run is pairs of edges.

int[] parents = new int[n];

for(int i=0;i<n;i++){

parents[i]=i;

}

private int find(int x) {

if(parents[x]!=x)

return find(parents[x])

return x;

}

private void union(int x, int y){

parents[find(y)]=find(x);

}

Time complexity O(n), space complexity O(n)
These methods can be improved to O(logN) using Union by Rank or Height.

class UnionFind:

def __init__(self, size: int) -> None:

self.group = [0] * size

self.rank = [0] * size

self.components = size

for i in range(size):

self.group[i] = i

def find(self, node: int) -> int:

if self.group[node] != node:

self.group[node] = self.find(self.group[node]) # compression

return self.group[node]

def join(self, node1: int, node2: int) -> bool:

group1 = self.find(node1)

group2 = self.find(node2)

node1 and node2 already belong to same group.

if group1 == group2:

return False # It means there exist a cycle.

self.components -= 1

if self.rank[group1] > self.rank[group2]:

self.group[group2] = group1

elif self.rank[group1] < self.rank[group2]:

self.group[group1] = group2

else:

self.group[group2] = group1 # union by rank

self.rank[group1] += 1

return True

def check_unique(self):

splits = set()

for i in range(self.size):

group = self.find(i)

if group not in splits:

splits.add(group)

return splits

def connected(self, node1, node2):

return self.find(node1) == self.find(node2)

def numOfConnected(self, isConnected: List[List[int]]) -> int:

n = len(isConnected)

uf = UnionFind(n)

edges = []

for row in range(n):

for col in range(row+1, n): # Cannot do row+1 as it may cause

error in self.group if you use len(set(self.group)) as components

if isConnected[row][col] == 1:

edges.append((row, col))

return uf.components

Path Compression: This technique is used during the find operation to make the tree flatter,
speeding up future operations. When you call find on an element, you make all nodes on the
path from that element to the root point directly to the root.

Union by Rank (or Size): This technique is used during the union operation to ensure that the
smaller tree (in terms of rank or size) is always added under the root of the larger tree, keeping
the overall tree shallow.

Time complexity: Constructor O(N), Find, Union, Connected O(ɑ(n)), per operation, where α(n)
is the inverse Ackermann function.
Space complexity: O(ɑ(n))

There are two variants of Union Find:
● Quick Find O(1) + Union O(N)
● Find O(N) + Quick Union O(N)
● Union by rank: Find Olog(N), Union Olog(N)

8.5. Minimum Spanning Tree
Resources:
https://leetcode.com/problems/min-cost-to-connect-all-points/solution/
https://www.simplilearn.com/tutorials/data-structure-tutorial/kruskal-algorithm
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

A spanning tree is a subset of a graph that includes all the graph's vertices and some of the
edges of the original graph, intending to have no cycles. A spanning tree is not necessarily
unique.

Method1: Prim’s Algorithm (BFS)
● Step 1: Determine an arbitrary vertex as the starting vertex of the MST. Assign a key

value to all vertices in the input graph. Initialize all key values as INFINITE.
● Step 2: Follow steps 3 to 5 till there are vertices that are not included in the MST (known

as fringe vertex).
● Step 3: Find edges connecting any tree vertex with the fringe vertices.
● Step 4: Find the minimum among these edges.
● Step 5: Add the chosen edge to the MST if it does not form any cycle.
● Step 6: Return the MST and exit

Note:
1. We start with node 0 by adding a virtual edge of cost 0 from node 0 to node 0. This makes the
code implementation cleaner.
2. Keep track of the nodes that’s in the MST for every step

Time complexity: O(V^2), O(ElogV) using heap
Space complexity: O(V)

https://leetcode.com/problems/min-cost-to-connect-all-points/solution/
https://www.simplilearn.com/tutorials/data-structure-tutorial/kruskal-algorithm
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

Not using heap:

class Solution:

def MST(self, vertices: List[List[int]]) -> int:

n = len(points)

mst_cost = 0

edges_used = 0

Track nodes which are visited.

in_mst = [False] * n

min_dist = [math.inf] * n

min_dist[0] = 0

while edges_used < n:

curr_min_edge = math.inf

curr_node = -1

Pick least weight node which is not in MST.

for node in range(n):

if not in_mst[node] and curr_min_edge > min_dist[node]:

curr_min_edge = min_dist[node]

curr_node = node

mst_cost += curr_min_edge

edges_used += 1

in_mst[curr_node] = True

Update adjacent nodes of current node.

for next_node in range(n):

weight = abs(points[curr_node][0] - points[next_node][0])

+\

abs(points[curr_node][1] - points[next_node][1])

if not in_mst[next_node] and min_dist[next_node] > weight:

min_dist[next_node] = weight

return mst_cost

Using heap:

def prim_mst(graph, start_node=0):

n = len(graph)

min_heap = [(0, start_node)] # (weight, vertex)

visited = [False] * n

mst_cost = 0

edges_in_mst = []

while min_heap and len(edges_in_mst)<n:

weight, u = heappop(min_heap)

if visited[u]:

continue

Include this edge in MST

visited[u] = True

mst_cost += weight

edges_in_mst.append((weight, u))

Add all edges from u to the heap

for v, cost in graph[u]:

if not visited[v]:

heappush(min_heap, (cost, v))

Return the total cost of the MST and the edges included in the MST

return mst_cost, edges_in_mst

The graph is {src_node : [tgt_node, edge_cost] … }

Method2: Kruskal’s Algorithm (Union Find)

● Step 1: Sort all edges in increasing order of their edge weights.
● Step 2: Pick the smallest edge.
● Step 3: Check if the new edge creates a cycle or loop in a spanning tree (Union Find).
● Step 4: If it doesn’t form the cycle, then include that edge in MST. Otherwise, discard it.
● Step 5: Repeat from step 2 until it includes |V| - 1 edges in MST.
● Step 6: Return the MST and exit

Time complexity: O(ElogE)
Space complexity: O(V)

class UnionFind:

def __init__(self, size: int) -> None:

self.group = [0] * size

self.rank = [0] * size

for i in range(size):

self.group[i] = i

def find(self, node: int) -> int:

if self.group[node] != node:

self.group[node] = self.find(self.group[node])

return self.group[node]

def join(self, node1: int, node2: int) -> bool:

group1 = self.find(node1)

group2 = self.find(node2)

node1 and node2 already belong to same group.

if group1 == group2:

return False

if self.rank[group1] > self.rank[group2]:

self.group[group2] = group1

elif self.rank[group1] < self.rank[group2]:

self.group[group1] = group2

else:

self.group[group1] = group2

self.rank[group2] += 1

return True

class Solution:

def MST(self, vertices: List[List[int]]) -> int:

n = len(vertices)

all_edges = []

Storing all edges of our complete graph and their weights.

for curr_node in range(n):

for next_node in range(curr_node + 1, n):

weight = abs(points[curr_node][0] - points[next_node][0])

+\

abs(points[curr_node][1] -

points[next_node][1])

all_edges.append((weight, curr_node, next_node))

Sort all edges in increasing order.

all_edges.sort()

uf = UnionFind(n)

mst_cost = 0

edges_used = 0

for weight, node1, node2 in all_edges:

if uf.join(node1, node2):

mst_cost += weight

edges_used += 1

if edges_used == n - 1:

break

return mst_cost

Prim’s Algorithm vs Kruskal’s Algorithm
Prim’s algorithm is good for densely connected graph Kruskals’s algorithm is good for sparsely
connected graph

8.6. DFS
In Graph theory, the depth-first search algorithm (abbreviated as DFS) is mainly used to:

● Traverse all vertices in a connected “graph”;
● Traverse all paths between any two vertices in a “graph”.

Visit All Vertices:
The most important difference from DFS on trees is, it has to maintain a visited set to avoid
visiting the same node multiple times.

Recursive DFS:
● Start at a given node (the root).
● Mark the current node as visited.
● For each adjacent node (neighbor) that has not been visited, recursively apply DFS.

def dfs_recursive(graph, start, visited):

visited.add(start)

process(start)

for neighbor in graph[start]:

if neighbor not in visited:

dfs_recursive(graph, neighbor, visited)

dfs_recursive(graph, 0, set())

Iterative DFS:
● Created a stack of nodes and visited arrays.
● Start at a given node (the root).
● Push the start node onto a stack.
● While the stack is not empty:

○ Pop a node from the stack.
○ If the node has not been visited, mark it as visited.
○ Push all its unvisited neighbors onto the stack.

def dfs_iterative(graph, start):

visited = set()

stack = [start]

while stack:

node = stack.pop()

if node not in visited:

visited.add(node)

process(node)

Add unvisited neighbors to the stack

for neighbor in reversed(graph[node]): # Reverse to maintain

order similar to recursive

if neighbor not in visited:

stack.append(neighbor)

Time Complexity: O(V + E). Here, VV represents the number of vertices, and EE represents the
number of edges. We need to check every vertex and traverse through every edge in the graph.

Space Complexity: O(V^2). Either the manually created stack or the recursive call stack can
store up to V vertices. Or O(V) if check visited before pushing into the recursive stack.

Worst case: A complete graph is a graph where every vertex is connected to every other vertex.

Visit All Edges Between A Pair of Vertices:
We need the assist of a recursive stack which saves the vertices visited during this traversal.
Recursive stack is implemented by backtracking.

def dfs_all_paths(graph, start, end, curr_path, recursive_stack,

all_paths):

curr_path.append(start)

recursive_stack[start] = True

if start == end:

all_paths.append(curr_path[:])

else:

for neighbor in graph[start]:

Check to avoid cycles

if not recursive_stack[neighbor]:

dfs_all_paths(graph, neighbor, end, curr_path,

recursive_stack, all_paths)

curr_path.pop()

recursive_stack[start] = False

return all_paths

Time complexity: O((V-2)!)
Space complexity: O(V^3)

8.7. BFS
In Graph theory, the primary use cases of the “breadth-first search” (“BFS”) algorithm are:

● Traversing all vertices in the connected “graph”;
● Finding the shortest path between two vertices in a graph where all edges have equal

and positive weights.

The most important difference from BFS on trees is, it has to maintain a visited set to avoid
visiting the same node multiple times. As long as we use BFS, the first time we add target
vertex, that is the shortest path from start to target.

Iterative method:

● Start at a given node (the root).
● Enqueue the start node.
● While the queue is not empty:

○ Dequeue a node from the front of the queue.
○ If the node has not been visited, mark it as visited.
○ Enqueue all its unvisited neighbors.

def bfs_iterative(graph, start):

visited = set()

queue = deque([start])

while queue:

node = queue.popleft()

if node not in visited:

visited.add(node)

process(node)

for neighbor in graph[node]:

if neighbor not in visited:

queue.append(neighbor)

Recursive method: BFS can be implemented recursively using a helper function to manage the
queue. This implementation is less common and can be more complex due to the need to pass
the queue and visited set through recursive calls.

● Start at a given node (the root).
● Enqueue the start node and call the recursive function.
● In the recursive function:

○ If the queue is empty, skip
○ Dequeue a node from the front of the queue.
○ If the node has not been visited, mark it as visited.
○ Enqueue all its unvisited neighbors.
○ Recursively call the function.

def bfs_recursive(graph, queue, visited):

if not queue:

return

node = queue.popleft()

if node not in visited:

visited.add(node)

process(node)

for neighbor in graph[node]:

if neighbor not in visited:

queue.append(neighbor)

bfs_recursive(graph, queue, visited)

Wrapper function to start the recursive BFS

def bfs_recursive_start(graph, start):

visited = set()

queue = deque([start])

bfs_recursive(graph, queue, visited)

Time Complexity: O(V + E). Here, V represents the number of vertices, and E represents the
number of edges. We need to check every vertex and traverse through every edge in the graph.
The time complexity is the same as it was for the DFS approach.

Space Complexity: O(V). Generally, we will check if a vertex has been visited before adding it to
the queue, so the queue will use at most O(V) space. Keeping track of which vertices have been
visited will also require O(V) space.

8.8. Dijkstra's Algorithm
Dijkstra’s algorithm is used on weighted graph, computing the shortest path from a single vertex
to all the other vertices.

Note: All edges should be positive

class Solution:

def Dijkstra(self, n, edges: List[List[int]]) -> List[int]:

graph is an adjacency matrix with key to be a vertex, value to be a

(target vertex, edge weight) pair

dist = [inf]*n

visited = [False] * n

dist[0] = 0 # optimal distance is pre-added, before adding to queue

Q = [(0, 0)] # The min heap saves (edge weight, vertex) pairs

While Q:

c, u = heappop(Q) # c is the current distance from start to u

if visited[u]:

continue

visited[u] = True

for neighbor in graph[u]: # For undirected version, you need keep

a visited set in order to avoid visiting u when u has already visited

v = neighbor[0]

if visited[v]:

continue

alt = c + neightbor[1]

if alt < dist[v]:

dist[v] = alt # pre-added distance

heappush(Q, (alt, v))

return dist

Time complexity with min-heap O(V+ElogV), without min-heap O(V^2), the worst case is a
complete graph where each vertex is connected to many other vertices

Space complexity is O(V)

If we want to know the shortest path to a certain target and return the trace, we can use a prev
array to save the node that’s prior to the current node on the path from source to target

class Solution:

def dijkstra(self, n, edges: List[List[int]], target) -> List[int]:

graph is an adjacency matrix with key to be a vertex, value to be a

(target vertex, edge weight) pair

dist = [inf]*n

dist[0] = 0

prev = [-1]*n # Initialize a prev array to save the node prior to

vertices

Q = [(0, 0)] # The min heap saves (edge weight, vertex) pairs

While Q:

c, u = heappop(Q)

if u == target: # break the loop if the target is found

break

if visited[u]:

continue

for neighbor in graph[u]:

v = neighbor[0]

alt = c + neightbor[1]

if alt < dist[v]:

dist[v] = alt

prev[v] = u # update the prev node of v

heappush(Q, (alt, v))

Find the trace from source to target

trace = []

u = target

if prev[u] != -1 or u==0 # default 0 is source, check if vertex is

reachable

while u:

trace.append(u)

u = prev[u]

return trace[::-1]

If we want to get the minimum distance of k steps,
● we cannot use heap since it could process later steps first than previous ones
● we cannot use visited set, since this won’t guarantee optimality

def max_k_dijkstra(self, n: int, edges: List[List[int]], src: int, dst:

int, k: int) -> int:

graph = defaultdict(set)

for u, v, w in edges:

graph[u].add((v, w))

dist = [inf]*n

dist[src] = 0

Q = deque([(0, src)])

while Q:

if k<0:

break

k -= 1

size = len(Q)

for _ in range(size):

c, u = Q.popleft()

for v, w in graph[u]:

alt = c + w

if alt < dist[v]:

dist[v] = alt

Q.append((alt, v))

return -1 if dist[dst] == inf else dist[dst]

8.9. A* Algorithm
A star algorithm is used on weighted graph, computing starting from a single vertex to find a
path to the given single goal node having the smallest cost. The implementation is the same
with BFS, but replace the deque with heap, and

A* combines the strengths of Dijkstra’s Algorithm and Greedy Best-First-Search by using a
heuristic to guide its search. The algorithm uses the following function to determine the order of
node exploration:
f(n) = g(n)+h(n) # estimated cost through n to goal, cost to node n, estimated cost from n to goal

Priority Queue: Uses a priority queue to explore nodes based on their f(n).
Open List: Stores nodes to be explored.
Closed Set: Keeps track of nodes already explored.
Heuristic Function: Provides an estimate of the distance from any node to the goal.
Graph Representation: Adjacency list, each node points to its neighbors with edge weights.

def a_star(graph, start, goal, heuristic):

open_list = []

heappush(open_list, (0 + heuristic(start, goal), 0, start, [])) # keep

record of f(n), g(n), current node, path

closed_set = set()

while open_list:

_, cost, current, path = heappop(open_list)

if current in closed_set:

continue

path = path + [current] # keep recording the path

if current == goal: # check if goal is reached

return path

closed_set.add(current)

for neighbor, weight in graph[current]:

if neighbor not in closed_set:

total_cost = cost + weight

heappush(open_list, (total_cost + heuristic(neighbor,

goal), total_cost, neighbor, path))

return None # No path found

Heuristic function example (Manhattan distance for grids)

def heuristic(node, goal):

x1, y1 = node

x2, y2 = goal

return abs(x1 - x2) + abs(y1 - y2)

Time complexity: O()𝑏𝑑

Space complexity: O()𝑏𝑑

8.10. Bellman-Ford’s Algorithm
Bellman-Ford’s algorithm is used on weighted graph, computing the shortest path from a single
vertex to all the other vertices.
Note:

● It can handle edges with negative weights, although it’s slower
● It can be used to detect a negative cycle

Idea:
The Bellman-Ford algorithm’s primary principle is that it starts with a single source and
calculates the distance to each node. The distance is initially unknown and assumed to be
infinite, but as time goes on, the algorithm relaxes those paths by identifying a few shorter
paths. Hence it is said that Bellman-Ford is based on “Principle of Relaxation“.

It states that for the graph having N vertices, all the edges should be relaxed N-1 times to
compute the single source shortest path.
In the worst-case scenario, a shortest path between two vertices can have at most N-1 edges,
where N is the number of vertices.

class Solution:

def bellman_ford(self, n, edges: List[List[int]]) -> List[int]:

dist = [inf]*n

dist[0] = 0

for i in range(1, n): # This has to be N-1 times iteration

for edge in edges:

u, v, w = edge # edge definition

if dist[u] != inf and dist[v] > dist[u] + w:

dist[v] = dist[u] + w

return dist

Time complexity: O(VE)
Space complexity: O(V)

This algorithm can only work when all vertices are reachable from the source vertex 0. If not, we
have to go over all vertices with a distance of infinity one by one.

To detect a negative cycle: we need to do another loop and check if distances won’t change

class Solution:

def bellman_ford_detect_negative_cycle(self, n, edges: List[List[int]])

-> Boolean:

dist = [inf]*n

dist[0] = 0

for i in range(1, n): # This has to be N-1 times iteration

for edge in edges:

u, v, w = edge # edge definition

if dist[u] != inf and dist[v] > dist[u] + w:

dist[v] = dist[u] + w

Detect negative cycle by the last cycle

for e in edges:

u, v, w = edge

if dist[u] != inf and dist[v] > dist[u] + w:

return True

return False

If we want to get the minimum distance of k steps,
● we have to use use a copy of dist array to update the distance step by step

def max_k_bellman_ford(self, n: int, edges: List[List[int]], src: int, dst:

int, k: int) -> int:

graph = defaultdict(set)

for u, v, w in edges:

graph[u].add((v, w))

dist = [inf]*n

dist[src] = 0

for i in range(k+1):

tmp_dist = [c for c in dist]

for u, v, w in edges:

if dist[u] == inf:

continue

alt = dist[u] + w

if alt < tmp_dist[v]:

tmp_dist[v] = alt

dist = tmp_dist

return -1 if dist[dst] == inf else dist[dst]

8.11. Floyd-Warshall Algorithm
Floyd–Warshall algorithm is an algorithm for finding shortest paths in a weighted graph with
positive or negative edge weights (but with no negative cycles) between all pairs of vertices.

The idea of the algorithm:
● Initialize the solution matrix same as the input graph matrix as a first step.
● Then update the solution matrix by considering all vertices as an intermediate vertex.

● The idea is to pick all vertices one by one and updates all shortest paths which include
the picked vertex as an intermediate vertex in the shortest path.

class Solution:

def floyd_warshall(self, n, edges: List[List[int]]) -> List[List[int]]:

dist = [[inf]*n for _ in range(n)]

for i in range(n):

dist[i][i] = 0

for edge in edges:

u, v, w = edge

dist[u][v] = w

for k in range(n):

for i in range(n):

for j in range(n):

dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])

return dist

Time complexity: O(V^3)
Space complexity: O(V^2)

The algorithm can also be used to detect negative cycles:
The idea is to find a node that the shortest path to itself is smaller than 0

class Solution:

def floyd_warshall_detect_negative_cycle(self, n, edges: List[List[int]])

-> Boolean:

dist = [[inf]*n for _ in range(n)]

for i in range(n):

dist[i][i] = 0

for edge in edges:

u, v, w = edge

dist[u][v] = w

for k in range(n):

for i in range(n):

for j in range(n):

dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])

An extra transversal on the vertices to check negative connection

for i in range(n):

if dist[i][i]<0:

return True

return False

8.12. Bipartite Graph

In graph theory, a “cut” is a partition of vertices in a “graph” into two disjoint subsets. A crossing
edge is an edge that connects a vertex in one set with a vertex in the other set.

The cut property: For any cut C of the graph, if the weight of an edge E in the cut-set of C is
strictly smaller than the weights of all other edges of the cut-set of C, then this edge belongs to
all MSTs of the graph.

A bipartite graph is a special type of graph that can be divided into two disjoint and independent
sets U and V such that every edge connects a vertex in U to a vertex in V. In other words, no
edge exists between vertices within the same set.

To check if a given graph is bipartite, you can use either BFS or DFS to try and color the graph
using two colors. If you can successfully color the graph without conflicts, the graph is bipartite.

def is_bipartite_dfs(graph):

n = len(graph)

colors = [-1]*n

def dfs(node, c):

colors[node] = c # color node once visiting

ans = True

for neighbor in graph[node]:

if colors[neighbor]!=-1: # check color before visiting

if colors[neighbor] == colors[node]:

return False

continue

ans &= dfs(neighbor, 1-c)

return ans

return dfs(i, 0)

def is_bipartite_bfs(graph):

color = {}

for start in graph:

if start not in color:

queue = deque([start])

color[start] = 0 # Start coloring with 0

while queue:

node = queue.popleft()

for neighbor in graph[node]:

if neighbor not in color:

color[neighbor] = 1 - color[node] # Alternate

color

queue.append(neighbor)

elif color[neighbor] == color[node]:

return False

return True

Properties of Bipartite Graphs:
● Two Sets of Vertices: Vertices can be divided into two sets U and V.
● No Odd-Length Cycles: A graph is bipartite if and only if it does not contain any

odd-length cycles.
● Two-Colorable: Bipartite graphs can be colored using two colors such that no two

adjacent vertices share the same color.

Maximum Bipartite Matching: (also know as Minimum Vertex Cover) is the largest set of
edges such that no two edges share a common vertex.
We use the Hopcroft-Karp algorithm to solve it.

class BipartiteGraph:

def __init__(self, u_size, v_size):

self.u_size = u_size

self.v_size = v_size

self.edges = [[] for _ in range(u_size + v_size + 1)]

self.pair_u = [-1] * (u_size + 1)

self.pair_v = [-1] * (v_size + 1)

self.dist = [-1] * (u_size + 1)

def add_edge(self, u, v):

self.edges[u].append(v + self.u_size)

self.edges[v + self.u_size].append(u)

def bfs(self):

queue = []

for u in range(1, self.u_size + 1):

if self.pair_u[u] == -1:

self.dist[u] = 0

queue.append(u)

else:

self.dist[u] = float('inf')

self.dist[0] = float('inf')

for u in queue:

if self.dist[u] < self.dist[0]:

for v in self.edges[u]:

if self.dist[self.pair_v[v - self.u_size]] ==

float('inf'):

self.dist[self.pair_v[v - self.u_size]] =

self.dist[u] + 1

queue.append(self.pair_v[v - self.u_size])

return self.dist[0] != float('inf')

def dfs(self, u):

if u != 0:

for v in self.edges[u]:

if self.dist[self.pair_v[v - self.u_size]] == self.dist[u]

+ 1:

if self.dfs(self.pair_v[v - self.u_size]):

self.pair_v[v - self.u_size] = u

self.pair_u[u] = v - self.u_size

return True

self.dist[u] = float('inf')

return False

return True

def hopcroft_karp(self):

matching = 0

while self.bfs():

for u in range(1, self.u_size + 1):

if self.pair_u[u] == -1:

if self.dfs(u):

matching += 1

return matching

Time complexity: O(sqrt(V) ⋅E)

8.13. Detect Cycle in an undirected graph
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/

DFS (with parent):

https://www.geeksforgeeks.org/detect-cycle-undirected-graph/

We need to keep recording the parent node of the current node, since if a visited node is a
parent node, then, there’s a cycle.

● If an adjacent vertex is already visited and is not the parent of the current vertex, a cycle
is detected.

def dfs_cycle_detection(graph, vertex, visited, parent):

visited[vertex] = True

for neighbor in graph[vertex]:

if not visited[neighbor]:

if dfs_cycle_detection(graph, neighbor, visited, vertex):

return True

elif neighbor != parent:

return True

return False

def has_cycle_dfs(graph):

visited = {v: False for v in graph}

for vertex in graph:

if not visited[vertex]:

if dfs_cycle_detection(graph, vertex, visited, -1):

return True

return False

Union-Find Method (Disjoint Set Union - DSU)
Using the Union-Find data structure, you can detect cycles by merging sets of vertices and
checking if two vertices belong to the same set.

● If the roots are the same, a cycle is detected.

class UnionFind:

def __init__(self, n):

self.parent = list(range(n))

self.rank = [0] * n

def find(self, u):

if self.parent[u] != u:

self.parent[u] = self.find(self.parent[u])

return self.parent[u]

def union(self, u, v):

root_u = self.find(u)

root_v = self.find(v)

if root_u != root_v:

if self.rank[root_u] > self.rank[root_v]:

self.parent[root_v] = root_u

elif self.rank[root_u] < self.rank[root_v]:

self.parent[root_u] = root_v

else:

self.parent[root_v] = root_u

self.rank[root_u] += 1

return False

return True

def has_cycle_union_find(edges, n):

uf = UnionFind(n)

for u, v in edges:

if uf.union(u, v):

return True

return False

8.14. Detect Cycle in a directed graph
Detect Cycle in a Directed Graph

DFS (backtracking with recursion stack):
DFS for cycle detection is based on the idea that there is a cycle in a graph only if there is a
back edge (i.e., a node points to one of its ancestors) present in the graph.

To detect a back edge, we need to keep track of the nodes visited till now and the nodes that
are in the current recursion stack (i.e., the current path that we are visiting). Recursive stack
is implemented by backtracking. (This recursive stack visited set is actually a seen set, which
means this vertex is seen during this traversing path but not all neighbor edges of this vertex are
explored.)

● If during recursion, we reach a node that is already in the recursion stack, there is a
cycle present in the graph.

Note: If the graph is disconnected then get the DFS forest and check for a cycle in individual
trees by checking back edges.

Time Complexity: O(V + E)
Space Complexity: O(V)

https://www.geeksforgeeks.org/detect-cycle-in-a-graph/

def dfs_cycle_detection(graph, vertex, visited, rec_stack):

visited[vertex] = True

rec_stack[vertex] = True

for neighbor in graph[vertex]:

if not visited[neighbor]:

if dfs_cycle_detection(graph, neighbor, visited, rec_stack):

return True

elif rec_stack[neighbor]:

return True

rec_stack[vertex] = False

return False

def has_cycle_dfs(graph):

visited = {v: False for v in graph}

rec_stack = {v: False for v in graph}

for vertex in graph:

if not visited[vertex]:

if dfs_cycle_detection(graph, vertex, visited, rec_stack):

return True

return False

Kahn's Algorithm (Topological Sort):
A little change to the original topological sort is:

● If the number of vertices in the topological order is less than the number of vertices in the
graph, a cycle exists.

Time Complexity: O(V + E)
Space Complexity: O(V)

def has_cycle_kahn(graph):

in_degree = {u: 0 for u in graph}

for u in graph:

for v in graph[u]:

in_degree[v] += 1

queue = deque([u for u in in_degree if in_degree[u] == 0])

count = 0

while queue:

vertex = queue.popleft()

count += 1

for neighbor in graph[vertex]:

in_degree[neighbor] -= 1

if in_degree[neighbor] == 0:

queue.append(neighbor)

return count != len(graph)

Examples:
LC 207. Course Schedule

8.15. Topological Sort (Kahn’s algorithm)
topological sort is used for:

● find a global order for all nodes in a DAG (Directed Acyclic Graph) with regarding to their
dependencies.

● Detect circles in directed graph

Kahn’s algorithm for topological sorting is an iterative approach that uses the concept of
in-degrees (number of incoming edges) of vertices. It maintains a list of vertices with zero
in-degree and processes them iteratively. It is the same as BFS from zero in-dgree vertices and
update the in-degrees in each iteration, we don’t need a visited set here.

● Calculate the in-degrees of all vertices.
● Enqueue all vertices with zero in-degree.
● While the queue is not empty:

○ Dequeue a vertex, add it to the topological order.
○ Decrease the in-degree of all its neighbors by 1.
○ If any neighbor's in-degree becomes zero, enqueue it.

● If all vertices are processed, the topological order is complete. If not, the graph contains
a cycle.

def topological_sort_kahn(graph):

in_degree = {u: 0 for u in graph}

for u in graph:

https://leetcode.com/problems/course-schedule/

for v in graph[u]:

in_degree[v] += 1 # directed edge

queue = deque([u for u in in_degree if in_degree[u] == 0])

topological_order = []

while queue:

vertex = queue.popleft()

topological_order.append(vertex)

for neighbor in graph[vertex]:

in_degree[neighbor] -= 1

if in_degree[neighbor] == 0:

queue.append(neighbor)

if len(topological_order) == len(graph):

return topological_order

else:

return [] # The graph has a cycle and thus no topological order

exists

Time complexity: O(V+E), Space Complexity: O(V+E)
Example:
Leetcode 207. Course Schedule
Leetcode 3203. Find Minimum Diameter After Merging Two Trees

Directed Topological Sort

class Solution {

public void DirectedTopologicalSort(int n, int[][] edges) {

Map<Integer, List<Integer>> adj = new HashMap<>();

// Has to keep track of all in-degrees

int[] indegree = new int[n];

// Adjacent matrix only store the outgoing edges

for (int[] edge : edges) {

adj.computeIfAbsent(edge[0], k->new

ArrayList<Integer>()).add(edge[1]);

indegree[edge[1]]++;

}

https://leetcode.com/problems/course-schedule/solutions/526835/course-schedule/
https://leetcode.com/problems/find-minimum-diameter-after-merging-two-trees/

Queue<Integer> q = new LinkedList<>();

// Push all the nodes with indegree zero in the queue.

for (int i = 0; i < n; i++) {

if (indegree[i] == 0) {

q.offer(i);

}

}

int nodesSeen = 0;

while (!q.isEmpty()) {

int size = q.size();

for(int j=0;j<size;j++) {

int node = q.poll();

nodesSeen++;

if (!adj.containsKey(node)) {

continue;

}

for (int neighbor : adj.get(node)) {

indegree[neighbor]--;

// When indegree is 0, add to queue

if (indegree[neighbor] == 0) {

q.offer(neighbor);

}

}

}

}

return;

}

}

Undirected Topological Sort (inverse BFS)

class Solution {

public void UndirectedTopologicalSort(int n, int[][] edges) {

Map<Integer, List<Integer>> adj = new HashMap<>();

int[] degree = new int[n];

// Adjacent matrix store all edges

for(int[] edge : edges) { # add bi directions

adj.computeIfAbsent(edge[0], k->new

ArrayList<>()).add(edge[1]);

degree[edge[0]]++;

adj.computeIfAbsent(edge[1], k->new

ArrayList<>()).add(edge[0]);

degree[edge[1]]++;

}

Queue<Integer> q = new LinkedList<>();

for(int i=0; i<degree.length; i++) {

if(degree[i] == 1) # only one edge connected

q.add(i);

}

Int nodeSeen = 0

while(!q.isEmpty()) {

int size = q.size();

for(int i = 0; i < size; i++) {

int node = q.poll();

degree[node]--;

for(int neighbour : adj.get(node)) {

degree[neighbour]--;

// degree to be 1 is the same as in degree to be 0

if(degree[neighbour] == 1) {

q.add(neighbour);

}

}

}

}

return;

}

}

Minimum height of undirected tree:

def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:

if n<=2: return [i for i in range(n)]

adj = [set() for _ in range(n)]

for u, v in edges:

adj[u].add(v)

adj[v].add(u)

leaves = deque([u for u in range(n) if len(adj[u])==1])

remaining = n

while remaining>2:

new_leaves = []

remaining -= len(leaves)

for u in leaves:

v = adj[u].pop()

adj[v].remove(u)

if len(adj[v]) == 1:

new_leaves.append(v)

leaves = new_leaves

return leaves

9. Eulerian Path (Hierholzer's Algorithm)
https://leetcode.com/problems/reconstruct-itinerary/editorial/
An Eulerian path (or Euler path) in a graph is a path that visits every edge exactly once. If such
a path exists and starts and ends at the same vertex, it is called an Eulerian circuit or cycle.

● Eulerian Circuit: An undirected graph has an Eulerian circuit if and only if every vertex
has an even degree and all vertices with nonzero degree are connected.

● Eulerian Path: An undirected graph has an Eulerian path if and only if exactly zero or two
vertices have an odd degree and all vertices with nonzero degree are connected.

Hierholzer’s algorithm (Finding an Eulerian Path) works as follows:
● Start at any vertex with an odd degree. If no such vertex exists, start at any vertex.
● Follow edges one by one. Remove each edge after it is visited. If you reach a vertex with

no unvisited edges, backtrack to the previous vertex.
● Continue until all edges have been visited. The path you have followed is the Eulerian

path.

Keynotes:
● Use a recursive stack to keep track of the current path.
● Traverse the graph, removing edges as they are visited.

https://leetcode.com/problems/reconstruct-itinerary/editorial/

● When reaching a vertex with no unvisited edges, backtrack using the stack.

def find_eulerian_path(graph):

Count the degree of each vertex

degree = defaultdict(int)

for u in graph:

for v in graph[u]:

degree[u] += 1

degree[v] += 1

Find the start vertex (one with odd degree or any vertex if none)

start = None

odd_degree_vertices = 0

for vertex in degree:

if degree[vertex] % 2 == 1:

odd_degree_vertices += 1

start = vertex

if odd_degree_vertices not in [0, 2]:

return None # No Eulerian Path or Circuit exists

if start is None:

start = next(iter(graph)) # Start from any vertex if all have even

degree

Hierholzer's Algorithm to find Eulerian path

def hierholzer(v):

path = []

stack = [v]

while stack:

u = stack[-1]

if graph[u]:

next_vertex = graph[u].pop()

graph[next_vertex].remove(u)

stack.append(next_vertex)

else:

path.append(stack.pop())

return path

Find the Eulerian path starting from the start vertex

path = hierholzer(start)

return path[::-1]

Time complexity: O(E+V)
Space complexity: O(E+V)

10. Hamiltonian Path (Hierholzer's Algorithm)
A Hamiltonian path in a graph is a path that visits each vertex exactly once. If such a path exists
and starts and ends at the same vertex, it is called a Hamiltonian cycle. Unlike Eulerian paths,
which are concerned with edges, Hamiltonian paths focus on vertices.

Keynote:
● NP-complete problem

Backtracking algorithm to find a hamiltonian path

def is_valid(vertex, pos, path, graph):

Check if this vertex is an adjacent vertex of the previously added

vertex.

if vertex not in graph[path[pos - 1]]:

return False

Check if the vertex has already been included in the path.

if vertex in path:

return False

return True

def hamiltonian_path_util(graph, path, pos):

Base case: If all vertices are included in the path

if pos == len(graph):

return True

Try different vertices as the next candidate in the Hamiltonian Path.

for vertex in graph:

if is_valid(vertex, pos, path, graph):

path[pos] = vertex

if hamiltonian_path_util(graph, path, pos + 1):

return True

path[pos] = -1

return False

def find_hamiltonian_path(graph):

path = [-1] * len(graph)

Let the first vertex in the path be the first vertex of the graph.

This is arbitrary and can be any vertex.

start_vertex = next(iter(graph))

path[0] = start_vertex

if not hamiltonian_path_util(graph, path, 1):

return None

return path

Time complexity: O(N!) in the worst case, where N is the number of vertices. This is because
the algorithm tries all possible permutations of vertices.
Space complexity: O(N) for the path array and recursion stack.

11. General

11.1. Divide and Conquer
The divide and conquer algorithm is a paradigm for solving complex problems by breaking them
down into smaller subproblems, solving each subproblem independently, and then combining
their solutions to solve the original problem. This approach is particularly effective for problems
that can be recursively divided into similar subproblems.

The frequent questions are summarization or sorting

Key Steps in Divide and Conquer
● Divide: Break the problem into smaller, non-overlapping subproblems of the same type.
● Conquer: Solve each subproblem recursively. If the subproblem size is small enough,

solve it directly.
● Combine: Combine the solutions of the subproblems to form the solution to the original

problem.

def divide_and_conquer(problem):

Base case: if the problem is small enough, solve it directly

if is_small_enough(problem):

return direct_solution(problem)

Divide the problem into smaller subproblems

subproblems = divide(problem)

Conquer each subproblem recursively

sub_solutions = []

for subproblem in subproblems:

sub_solution = divide_and_conquer(subproblem)

sub_solutions.append(sub_solution)

Combine the solutions of the subproblems to form the solution of the

original problem

return combine(sub_solutions)

Time complexity: O(nlogn)
Space complexity: O(n)

Examples:
LC 148. Sort List

11.2. Streaming

11.3. Hash Function

11.4. Number Theory
The simplest lambda expression contains a single parameter and an expression:

11.5. Probability & Statistics

Problems involving probabilities on platforms like LeetCode often test your understanding of
statistical concepts, probability distributions, and sometimes require implementing simulations.

● Random Pick with Weight:

https://leetcode.com/problems/sort-list/

○ Problem: You are given an array of positive integers w where w[i] describes the
weight of index i (0-indexed). Write a function pickIndex which randomly picks an
index in proportion to its weight.

○ Use prefix and binary search

class Solution:

def __init__(self, w: List[int]):

self.prefix_sums = []

current_sum = 0

for weight in w:

current_sum += weight

self.prefix_sums.append(current_sum)

self.total_sum = current_sum

def pickIndex(self) -> int:

target = random.random() * self.total_sum

Binary search for the target zone in the prefix sums

low, high = 0, len(self.prefix_sums) - 1

while low < high:

mid = (low + high) // 2

if target > self.prefix_sums[mid]:

low = mid + 1

else:

high = mid

return low

● Shuffle an Array:
○ Problem: Implement the Fisher-Yates algorithm to shuffle an array.
○ Iterate over the array and swap each element with a randomly chosen element

that comes after it (including itself).

class Solution:

def __init__(self, nums: List[int]):

self.original = nums[:]

self.array = nums[:]

def reset(self) -> List[int]:

self.array = self.original[:]

return self.array

def shuffle(self) -> List[int]:

for i in range(len(self.array)):

swap_idx = random.randrange(i, len(self.array))

self.array[i], self.array[swap_idx] = self.array[swap_idx],

self.array[i]

return self.array

● Reservoir Sampling:
○ Problem: Given a stream of unknown length, randomly select k elements.
○ Initially fill the reservoir array.
○ For each new element in the stream, randomly decide whether to include it in the

reservoir (and if so, replace an existing element).

class ReservoirSampling:

def __init__(self, k: int):

self.k = k

self.reservoir = []

self.n = 0

def process_element(self, element):

self.n += 1

if len(self.reservoir) < self.k:

self.reservoir.append(element)

else:

s = random.randint(0, self.n - 1)

if s < self.k:

self.reservoir[s] = element

def get_sample(self):

return self.reservoir

Probability comoputing problems are usually solved by accumulating the multiplication of
probabilities of individual events. This type of problem are combine with DP or graph to get the
maximum of minimum probabilities of achieving some goal.

11.6. Voting
https://leetcode.com/problems/majority-element-ii/solution/
https://leetcode.com/problems/majority-element/solution/

Boyer-Moore Voting Algorithm:
A majority voting algorithm that takes O(n) time and O(1) space to identify the majority elements
that appear greater than n/m in an array of length n.

https://leetcode.com/problems/majority-element-ii/solution/
https://leetcode.com/problems/majority-element/solution/

Keynote:
The algorithm only ensures that the appearance of each of the selected majority elements is
greater than the appearance of minor elements combined.

Algorithm:
● Initialize m candidates and their countings as (None, 0) pairs
● Iterate over the array:

○ If the current element is equal to one of the potential candidates, the count for
that candidate is increased while leaving the count of the other candidate as it is.

○ If the counter reaches zero, the candidate associated with that counter will be
replaced with the next element if the next element is not equal to the other
candidate as well.

○ All counters are decremented only when the current element is different from all
candidates.

● Iterate over the array to verify if the selected majority elements appear greater than n/m
times

class Solution:

def majorityElement(self, nums: List[int]) -> List[int]:

if not nums:

return []

count1, count2, candidate1, candidate2 = 0, 0, None, None

for num in nums:

if candidate1 == num:

count1 += 1

elif candidate2 == num:

count2 += 1

elif count1 == 0:

candidate1 = num

count1 += 1

elif count2 == 0:

candidate2 = num

count2 += 1

else:

count1 -= 1

count2 -= 1

result = []

for c in [candidate1, candidate2]:

if nums.count(c) > len(nums)//3:

result.append(c)

return result

11.7. Reservoir Sampling
Reservoir Sampling:
In order to do random sampling over a population of unknown size with constant space, the
answer is reservoir sampling. The reservoir sampling algorithm is intended to sample k
elements from a population of unknown size, ensuring that each element has an equal
probability to be chosen.

We summarize the main idea of the algorithm as follows:
Initially, we fill up an array of reservoir R[] with the heading elements from the pool of samples
S[]. At the end of the algorithm, the reservoir will contain the final elements we sample from the
pool.
We then iterate through the rest of the elements in the pool. For each element, we need to
decide if we want to include it in the reservoir or not. If so, we will replace an existing element in
the reservoir with the current element.

S has items to sample, R will contain the result

def ReservoirSample(S[1..n], R[1..k])

fill the reservoir array

for i := 1 to k

R[i] := S[i]

replace elements with gradually decreasing probability

for i := k+1 to n

randomInteger(a, b) generates a uniform integer

from the inclusive range {a, ..., b} *)

j := randomInteger(1, i)

if j <= k

R[j] := S[i]

Given the above algorithm, it is guaranteed that at any moment, for each element scanned so
far, it has an equal chance to be selected into the reservoir.

If k happens to be one, which means to draw one element from a varied length list, we have a
tutorial.

int scope = 1, chosenValue = 0;

ListNode curr = this.head;

while (curr != null) {

// decide whether to include the element in reservoir

if (Math.random() < 1.0 / scope)

https://leetcode.com/problems/linked-list-random-node/editorial/

chosenValue = curr.val;

// move on to the next node

scope += 1;

curr = curr.next;

}

return chosenValue;

11.8. Bitwise Operation
To retrieve the right-most bit in an integer n: n & 1
To retrieve the left bits except the right-most one in an integer n: n >> 1
To flips the least-significant 1-bit in n to 0: n &= (n - 1)
XOR operation: a^0 = a; a^a = 0; a^b^a = a^a^b = 0^b = b
XOR is module 2 addition: a^b = (a+b)%2

Tricks:

Check if a number is even or odd:

def is_even(n):

return (n & 1) == 0

def is_odd(n):

return (n & 1) == 1

Swap two numbers without a temporary variable:

def swap(a, b):

a = a ^ b

b = a ^ b

a = a ^ b

return a, b

Clear the lowest set bit (least significant bit with value one):

def clear_lowest_set_bit(n):

return n & (n - 1)

Isolate the lowest set bit (least significant bit with value one):

def isolate_lowest_set_bit(n):

return n & -n

n = 12 # 1100 in binary

print(clear_lowest_set_bit(n)) # Output: 8 (1000 in binary)

Count the number of set bits (Hamming weight):

def count_set_bits(n):

count = 0

while n:

n &= (n - 1)

count += 1

return count

Check if a number is a power of two:

def is_power_of_two(n):

return n > 0 and (n & (n - 1)) == 0

Find the next power of two greater than or equal to n:

def next_power_of_two(n):

if n == 0:

return 1

n -= 1

n |= n >> 1

n |= n >> 2

n |= n >> 4

n |= n >> 8

n |= n >> 16

n += 1

return n

Reverse the bits of a number

def reverse_bits(n):

result = 0

for _ in range(32): # Assuming 32-bit integer

result = (result << 1) | (n & 1)

n >>= 1

return result

Find the only non-repeating element in an array where every element

repeats twice:

def find_single_element(arr):

result = 0

for num in arr:

result ^= num

return result

Get the binary representation of a number as a string:

def binary_representation(n):

return bin(n)[2:] if n >= 0 else "-" + bin(n)[3:]

Find the highest set bit:

def highest_set_bit(n):

if n == 0:

return 0

msb = 0

while n > 1:

n >>= 1

msb += 1

return 1 << msb

Find the lowest unset bit:

def lowest_unset_bit(n):

return ~n & (n + 1)

Toggle all bits:

def toggle_bits(n):

num_bits = n.bit_length()

return n ^ ((1 << num_bits) - 1)

n = 18 # Binary: 10010

print(toggle_bits(n)) # Output: 13 (Binary: 01101)

Multiply by 7 using bitwise operations:

def multiply_by_seven(n):

return (n << 3) - n

Divide by 2 using bitwise operations (floor division):

def divide_by_two(n):

return n >> 1

Detect if two integers have opposite signs:

def have_opposite_signs(x, y):

return (x ^ y) < 0

Add two numbers without using arithmetic operators:

def add(a, b):

while b != 0:

carry = a & b

a = a ^ b

b = carry << 1

return a

Subtract two numbers without using arithmetic operators:

def subtract(a, b):

while b != 0:

borrow = (~a) & b

a = a ^ b

b = borrow << 1

return a

Count trailing zeros in an integer:

def count_trailing_zeros(n):

if n == 0:

return 32 # Assuming 32-bit integer

count = 0

while (n & 1) == 0:

n >>= 1

count += 1

return count

Count leading zeros in an integer:

def count_leading_zeros(n):

if n == 0:

return 32 # Assuming 32-bit integer

count = 0

while (n >> (31 - count)) & 1 == 0:

count += 1

return count

Find the next higher number with the same number of 1 bits:

def next_higher_with_same_ones(n):

c = n

c0 = c1 = 0

while ((c & 1) == 0) and (c != 0):

c0 += 1

c >>= 1

while (c & 1) == 1:

c1 += 1

c >>= 1

if c0 + c1 == 31 or c0 + c1 == 0:

return -1

pos = c0 + c1

n |= (1 << pos)

n &= ~((1 << pos) - 1)

n |= (1 << (c1 - 1)) - 1

return n

Find the previous lower number with the same number of 1 bits:

def next_lower_with_same_ones(n):

temp = n

c0 = c1 = 0

while (temp & 1) == 1:

c1 += 1

temp >>= 1

if temp == 0:

return -1

while ((temp & 1) == 0) and (temp != 0):

c0 += 1

temp >>= 1

p = c0 + c1

n &= ((~0) << (p + 1))

mask = (1 << (c1 + 1)) - 1

n |= mask << (c0 - 1)

return n

Calculate the XOR from 1 to n:

def xor_from_1_to_n(n):

if n % 4 == 0:

return n

elif n % 4 == 1:

return 1

elif n % 4 == 2:

return n + 1

else:

return 0

Determine if a number is a power of four:

def is_power_of_four(n):

return n > 0 and (n & (n - 1)) == 0 and (n & 0xAAAAAAAA) == 0

Rotate bits to the left:

def rotate_left(n, d, bit_width=32):

return (n << d % bit_width) | (n >> (bit_width - d % bit_width))

LC 190. Reverse Bits

https://leetcode.com/problems/reverse-bits/

